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ABSTRACT

Score-at-a-Time index traversal is a query processing approach
which supports early termination in order to balance efficiency and
effectiveness trade-offs. In this work, we explore new techniques
which extend a modern Score-at-a-Time traversal algorithm to al-
low for parallel postings traversal. We show that careful integration
of parallel traversal can improve both efficiency and effectiveness
when compared with current single threaded early termination ap-
proaches. In addition, we explore the various trade-offs for differing
early termination heuristics, and propose hybrid systems which
parallelize long running queries, while processing short running
queries with only a single thread.

1 INTRODUCTION

As collection sizes continue to grow, a major challenge for large
scale search engines is the ability to return results reliably and
efficiently. Prior work has shown that long response times directly
impact the user experience, leading to both user abandonment and
a loss of potential revenue [17, 30]. Since large scale systems must
perform efficiently for as many queries as possible, the median and
mean times are often less important than the 95th or 99th percentile
response times, commonly referred to as the tail latency.
Although various approaches for reducing tail latency have been
explored, the majority of this effort has been focused on document-
ordered index layouts [14, 16]. Recently, Lin and Trotman [20] revis-
ited impact-ordered indexes, showing that Score-at-a-Time (SAAT)
index traversal is both efficient and effective in large-scale collec-
tions, and can be used to effectively control tail latency through
early termination, at the expense of some effectiveness. Further-
more, a recent comparative study that compared document-ordered
and impact-ordered indexes showed promise for impact-ordered
indexes, as the efficiency of SAAT traversal with early termina-
tion is not substantially impacted by the length of the query, nor
the number of required results [6]. This has implications for large-
scale search systems, which will often retrieve a large set of can-
didate documents for further consideration by machine-learned
rankers [22]. However, only fixed early termination strategies were
explored in prior works, whereby the SAAT system has its execution
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terminated after processing a predefined and constant number of
postings [6, 20].

In this paper, we explore the implications of different early-
termination heuristics for SAAT retrieval [1], and explore how
selective parallelization [14] can be implemented within a SAAT
architecture to meet restrictive service level agreements (SLAs). We
consider the following research questions:

RQ1 What are the efficiency and effectiveness trade-offs for cur-
rent state-of-the-art early-termination heuristics?

RQ2 How can parallel processing accelerate Score-at-a-Time in-
dex traversal?

RQ3 How can long queries be processed efficiently without sacri-
ficing effectiveness?

These issues contribute further knowledge on the behaviour of
SAAT index traversal and early termination, including both the effi-
ciency and effectiveness profiles of these heuristics. Furthermore,
we explain the design and implementation of a parallel SAAT algo-
rithm, and show how selective parallelization can be used to accel-
erate queries which are predicted to run slower than a pre-specified
budget, while allowing short running queries to be processed in a
single-threaded manner, thus reducing overall resource usage.

2 BACKGROUND & RELATED WORK
2.1 Query Processing

Ranked retrieval systems are designed to return the top-k docu-
ments for a given query g by applying a similarity function r onto
a set of matching documents, and then ranking the matched docu-
ments by their respective scores. Each document can be assigned a
similarity score S by summing the contribution of the query terms
from q that also appear in d:

Sd.q = Z r(d,t)

teqnd

The similarity function may represent any additive scoring function
such as BM25, TFXIDF, and many others. Typically, r will weight the
similarity of a document d with respect to a single term ¢ by utilizing
both term and document collection statistics such as term frequency,
document length, inverse document frequency, and possibly other
similar statistics.

Statistics used by r to rank documents need to be stored such
that ranking can be carried out efficiently. In order to maintain
and organize these statistics, an index is built across the document
collection. The most common indexing approach is the inverted
index. For each unique term ¢ that is discovered during indexing,
the inverted index stores a corresponding postings list, L;. Each
document d that contains term ¢ will have a corresponding posting
in L;, which stores a unique Document Identifier (DocID) for d,
as well as some payload information used for ranking, such as the
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number of occurrences of ¢ in d (the term frequency, fy ;). At query
time, the postings list for each unique query term can be looked
up, and then traversed efficiently, to find the top-k documents. The
method used to traverse the postings lists is known as the index
traversal strategy, and different strategies are most amenable to
specific index organizations.

Document-ordered Indexes. Document ordered indexes ensure
that each postings list is sorted by increasing DocID, and are most
commonly used for Document-at-a-Time (DAAT) traversal, whereby
each candidate postings list is traversed simultaneously, and a single
document is scored before moving forward to the next document.
Such indexes are well studied, and many efficient DAAT traversal
algorithms have been explored in the literature, such as the DAAT
MaxScogre [31, 36], WAND [5], and Bmw [10, 11] algorithms.

Frequency-ordered Indexes. Frequency-ordered indexes group
DocIDs together into “segments”, where each segment contains a
term frequency, followed by a corresponding sequence of DocIDs
which contain that particular frequency. Then, the segments are
ordered such that the highest frequency segments appear first. The
aim of this organization is to efficiently process the most important
segments first, as higher term frequencies usually result in larger
similarity scores from r. Such processing can be realized using the
Term-at-a-Time (TAAT) traversal strategy, whereby each postings
list associated with the query is considered in isolation [26, 28].
Such processing requires an additional structure to store the partial
results from r, known as an accumulator table. The accumulator
table must efficiently support updating a score for any particular
document identifier, and is usually implemented using a hashtable
or array-based structure [15].

Impact-ordered Indexes. Taking the frequency-ordered organi-
zation one step further are impact-ordered indexes. The idea is the
same as frequency-ordered indexes, but instead of storing a term
frequency for each segment, the output of r is quantized before
being stored. Since the quantization occurs at index time, the cost
for calculating r is not factored into the live search system, which
can result in more efficient query processing, at the cost of addi-
tional indexing time [1, 7]. Usually, impact-ordered indexes are
processed using a Score-at-a-Time (SAAT) processing algorithm [1].
SaAT processing involves scoring segments in order of decreasing
impact score, whereby the highest scoring segments are processed
first. The main observation with SAAT traversal is that since the
segments are processed in descending impact order, the largest
score contributions will be added early on in the processing, and
the ranking will be gradually refined as the traversal progresses. A
recent implementation of an efficient SAAT query processing sys-
tem is the JAss system, proposed by Lin and Trotman [20], which
is the focus of this study.

2.2 Large Scale IR Systems

Since large scale IR systems need to service thousands of queries
across millions or billions of documents per second, the system is
designed to maximize efficiency. In particular, the document index
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is divided into many smaller shards [3, 18], and each shard is al-
located to one or more Index Server Nodes (ISNs). When a query
enters the search system, a broker decides which ISNs to query [18],
and then forwards the query to those ISNs. The role of the ISN
is simple; return the top-k results as efficiently as possible. After
this, the broker may merge and then forward these results to other
processing nodes, which may employ more resource-intensive ap-
proaches such as machine learned models to re-rank the candidate
documents, which can then be returned to the end user.

2.3 Tail Latency

Traditionally, IR practitioners were concerned with improving the
mean or median time that a system takes to process queries — by
improving the efficiency, more queries could be processed at any
given time, allowing greater throughput. Recently, however, more
focus is being put on tail latency [9, 25].

Reducing the Tail. Various approaches have been taken to re-
duce tail latency, such as enforcing early termination [20], pre-
dicting and parallelizing long running queries [14, 16], improved
scheduling [23, 37], selective pruning [4, 32], and query rewrit-
ing [24]. However, the majority of this effort has been conducted
with Document-at-a-Time (DAAT) index layouts, which have vastly
different performance characteristics to other index layouts and
which, in comparison, have not been well explored [6]. The most
relevant work to this study is the work from Jeon et al. [14], which
uses an efficiency predictor to determine when a query is likely
to be long running. If the query is long running, multiple threads
are used to accelerate this process, whereas short running queries
are processed with just a single thread to improve resource con-
sumption of ISNs. This work was extended by introducing an even
more advanced prediction framework, known as Delayed, Dynamic,
Selective prediction, which focused on extreme (99.99th percentile)
tail latencies. As discussed later, SAAT techniques need not apply
sophisticated models, as the processing time is very consistent and
predictable, which may not be the case for DAAT dynamic pruning
algorithms [23].

Service Level Agreements. A service level agreement (SLA) is
an agreed performance budget that the search system adheres
to [13, 14, 16, 37]. SLAs can be set such that the entire search
process does not degrade the experience for end users, and SLAs
allow various parts of the entire search system to have distinct
and precise budgets. Typically, a SLA will enforce a high percentile
latency, which ensures the entire system does not often go over the
pre-specified budget. In this paper, we explore efficient processing
techniques which guarantee a particular running time, and mini-
mize effectiveness loss. These guarantees are becoming increasingly
important in large scale, commercial, multi-stage search engines
where the initial index traversal is largely a “filter” which gathers
as many candidates as possible in a fixed amount of time [12, 27].

3 SCORE-AT-A-TIME TRAVERSAL

In this section, we describe the inner workings of the Jass system,
including the structures and algorithms used to efficiently process
queries using a SAAT index traversal.
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buy [3]2 4 7 11 12] [1]5 6 9 16 20 23]
raspberry [B] - - - | [a] - - - | [A] |
pi 71~~~ 6 -1 B | G- - - |

Figure 1: Internal representation of three Jass postings lists for the
query ‘buy raspberry pi’ . Each segment consists of an impact score,
followed by an ascending list of document identifiers. Segments
are processed from highest to lowest impact, and ties are broken
by processing shorter segments first.

3.1 Jass Processing

System flow control. Given a set of candidate postings lists to
process, each consisting of an impact score followed by an ascend-
ing list of document identifiers, the first step is to extract out the
segment metadata and store it as a vector. This vector contains a
(impact, offset, length) tuple for each segment in the provided set
of postings lists, which stores the segment impact value, the byte
offset in which the segment begins in the postings, and the length
of the segment. For example, consider Figure 1. The metadata tuples
for the term ‘buy’ would be (3, b1, 5) and (1, by, 6) where b; and by
represent the byte offset for the respective segments.

The metadata vector is then sorted in descending order of the
impact values, with ties broken by length (shorter segments be-
fore longer segments). Posting processing is initiated by iterating
through the sorted vector, and processing the next segment if and
only if the sum of the processed postings plus the length of the
candidate segment do not exceed the upper-bound number of post-
ings to process, p, explained further below. After each segment is
processed, the processed postings counter is updated by adding the
length of the segment that was just processed. Once the stopping
rule is applied, a top-k heap which is maintained by Jass can be
iterated to efficiently return the top-k highest scoring documents.

Segment processing. To process a segment, the corresponding
metadata tuple is used to access the correct byte offset to the desired
segment. Then, the monotone list of document identifiers is decom-
pressed into a local buffer. Next, Jass simply iterates the DocIDs in
the buffer, adding the segment impact score to the corresponding
accumulator for the given DocID. When an accumulator value is
updated, Jass ensures that the top-k score heap is updated to reflect
any potential change caused by the accumulator update. The sim-
plicity of the flow control and lack of branching allows extremely
efficient processing.

3.2 Aggression Settings

When processing a query with Jass, aggressive early termination is
achieved through setting a parameter, p, which corresponds to the
maximum number of postings which will be evaluated. A candidate
segment will only be processed if the sum of previously processed
postings plus the length of the candidate segment does not exceed p.
We now describe alternative ways of setting p, and the implications
of each.

For a given query g made up of n unique terms t1, t, . . ., t, with
corresponding postings lists £1, L2, . . ., L, exhaustive processing
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requires setting p as:

n
Pexhaustive = Z |-Lil
i=1
In practice, this setting will cause processing efficiency to be sensi-
tive to both the number of query terms provided, and the length of
the corresponding postings lists.

One way to enforce aggressive early termination is to fix the
value of p to some constant. This heuristic setting for p can be
expressed as:

Pfixed = ¢, Where ¢ > 0

Based on empirical observations from a set of web topics, Lin and
Trotman [20] found that setting ¢ = 0.1-|C|, where |C| is the number
of documents in the collection, yielded an efficient configuration
without sacrificing too much effectiveness. This setting was shown
to provide efficient and effective results across other collections [6,
19, 20]. With this heuristic, the processing time becomes largely
independent of query length or the term statistics of query terms, as
the algorithm will simply back out once it has processed p postings

Another possible approach is to set p based on a percentage of
the candidate postings on a per-query basis:

n
z
=—- E L;|, wherez > 0
Ppercentage 100 2L [Li]

Using this configuration, Jass will process a variable number of post-
ings depending on both the value of z, the number of query terms,
and the length of the corresponding postings lists. Intuitively, as z
increases, so too would the effectiveness of the traversal, whereas
the efficiency would decrease. This setting has not yet been explored
in the literature, and is explored in this work.

3.3 Parallel Postings Traversal

In order to efficiently process long queries, or queries with a large
number of candidate postings, we propose a simple extension to
the Jass system which enables concurrent postings traversal. Sim-
ilar extensions have been proposed for DAAT dynamic pruning
algorithms [29], but are much more difficult to implement since
dynamic pruning effectiveness depends on tracking dynamic thresh-
olds which are then used to avoid processing documents that can
not make the top-k results. SAAT traversal is much more amenable
to parallelization, as the various worker threads need not commu-
nicate with each other during processing. We now explain this
extension, partially answering RQ2 in the process.

Multi-threaded flow control. In the multi-threaded extension of
Jass, the main processing loop explained above is modified to be
thread-safe. Firstly, the metadata vector is obtained as in the single-
threaded version. Next, we divide the processing load by allowing
each thread T}, to process every nth segment in the segment vector,
each updating a local processed postings counter. To this end, the
early termination heuristic is on a per-thread level rather than a
global level as in the single-threaded implementation.

Multi-threaded segment processing. Segment processing is sim-
ilar to the single-threaded version, with a few additional caveats
(Algorithm 1). Since multiple segments can be processed in parallel,
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Algorithm 1: Multi-threaded Segment Processing
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Query Length 2 3 4 5 6 7+ Total

Input :A segment metadata tuple m, the accumulator
table, A, and the lock table, L
Output:None
1 B « decompressSegment(m)
for d in B do

2

3 while getLock(L,;) do
4 ‘ continue

5 end

6 Ay «— Ag+ impact(m)
7 releaseLock(L )

s end

9 return

there is no guarantee that an accumulator can be safely updated,
as another thread may currently be updating the score. To rectify
this issue, we associate an atomic flag with every DocID. When a
thread wishes to update the accumulator of a particular document,
it must first obtain the flag (lines 3-5), at which point the thread is
safe to update the accumulator (line 6), then release the flag (line 7).
The atomic flag is implemented in user space to avoid expensive
kernel calls, and allows each active thread to remain on its respec-
tive processor without an expensive context switch occurring. This
synchronization technique can be thought of as a lightweight spin-
lock. The process of ‘locking’ and ‘unlocking’ the atomic flag is
indeed an atomic operation, and is therefore thread-safe.

Managing the accumulator table. By default, Jass manages its
accumulators using the efficient accumulator initialization method
of Jia et al. [15]. The main idea of this approach is to break the global
accumulator table into a number of subsets, each subset associated
with a single bit. At query time, the accumulators in a given subset
are initialized only if one of the accumulators in the subset needs to
be set. At this point, the subset of accumulators are initialized to 0,
and the associated bit is set. The key problem with this approach is
that adding a contribution to an accumulator involves the checking
(and potentially setting) of the bit, which is not thread safe. Indeed,
synchronization methods could be applied to the reading/writing of
the bit, but this will result in a performance hit (as it is much more
likely to be a point of contention between multiple worker threads).
For this reason, we revert to using a simple, global accumulator
table, with the overhead of initializing all accumulators before
processing. Using uint16_t accumulators, and the vectorized STL
std: :f£ill operation, this took 13 + 1.5 ms across 100 individual
benchmarks.

Managing the heap. Another major issue with concurrent accu-
mulator access is that the top-k heap cannot be efficiently main-
tained. For example, assume we are using 8 threads to process a
query. At any time, there may be up to 8 threads updating unique
accumulator values. If we wish to maintain a top-k heap, then the
heap updates must be made thread-safe, which results in a large
efficiency decay due to contention. To remedy this, we do away
with the score heap entirely, and opt for iterating the accumulator

Count 620 1,744 1,881 891 363 183 5,682

Table 1: The number of queries for each length across the UQV col-
lection. Stopwords and duplicate terms were removed from queries
before processing, and 83 single term queries were dropped.

table once the postings have been traversed, collecting the top-
k documents, and returning them once the process is complete.
Prior work has found that increasing k does not greatly impact
the performance of (single threaded) Jass, since the only practical
difference in processing is the number of heap operations that will
occur [6]. By removing the score heap, this is taken one step further
with parallel Jass, where the value of k has no notable difference
on processing efficiency, since a constant overhead is added (re-
gardless of k). Across three sets of 100 individual benchmarks with
k = {10,100, 1000}, this operation took 71 + 3ms, with very little
variance between the different values of k.

4 EXPERIMENTS
4.1 Experimental Setup

We use the original implementation of Jass' to run all single
threaded experiments. Our multi-threaded implementation of Jass
was derived from this codebase, and is made available? for repro-
ducibility. Experiments were conducted on the standard TREC
ClueWeb12-B13 collection, which contains 52, 343,021 web doc-
uments. This collection was indexed using the ATIRE system [34],
which Jass then reads and rewrites into its own internal structure.
Since Jass requires quantized indexes, ATIRE builds its postings
with 9 bit quantization 7] after applying the BM25 similarity model.
The Jass indexes were compressed using the QMX [33, 35] compres-
sion scheme. Although recent work has shown that uncompressed
indexes can outperform compressed indexes when using SAAT re-
trieval strategies, the additional space overhead for such gains can
be prohibitive [21]. In any case, the findings presented here are
orthogonal to the compression scheme, as the same compression
scheme is used for all instances of the search system.

In order to test our hypothesis that a fixed p setting reduces
system effectiveness as query length increases, we use the UQV100
collection of Bailey et al. [2]. This collection contains 5,764 queries
based on a set of 100 “backstories”, and contains shallow judgments
suitable for measuring early precision metrics. After normalization,
which included s-stemming, stopping, and removal of duplicate
terms within a query, 5,682 queries of varying lengths remained
(Table 1). Note that in our analyses, we group all queries with 7 or
more terms together (7+).

Timings are performed in memory on an idle Red Hat Enterprise
Linux Server (v7.2) with two Intel Xeon E5-2690 v3 CPUs and 256GB
of RAM. Each CPU has 12 physical cores with hyper-threading
enabled, resulting in 48 available processing cores. Algorithms
were compiled using GCC 6.2.1 with the -03 optimization flag. All
timings are reported in milliseconds unless otherwise stated, and

!http://github.com/lintool/jass
http://github.com/JMMackenzie/Multi-Jass
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are the average of 3 runs. We denote mean values in boxplots with
a diamond.

4.2 Early Termination Trade-Offs

Our first experiment explores the relationship between the early
termination heuristic, and the effectiveness of the processed query.
In order to measure the effectiveness loss, we first ran all 5,682
queries exhaustively using pe haustive- Next, we ran JAss using the
percentage based heuristic ppercentage for z = {5,10,...,95}. We
also ran Jass using the fixed heuristic pfyq for various values of
¢ between 250 thousand and 75 million. Then, for each heuristic
configuration, we retrieved the top-10 documents for each query,
and computed the difference in NDCG@10, with respect to the
exhaustive result. Next, we calculated the proportion of wins, ties,
and losses that the heuristic traversal had with respect to the ex-
haustive traversal. Since some improvements or losses may have
been small, we consider deltas < 10% of the exhaustive value to
be a tie. Figure 2 shows the density of wins, losses, and ties when
comparing both fixed and percentage-based heuristics with the
exhaustive run across various query lengths. As the length of the
query increases, so too does the magnitude of postings that must
be processed to achieve a close-to-exhaustive performance. This
indicates that setting a fixed value of p may result in reduced effec-
tiveness as the query length (and, more importantly, the number of
candidate postings) increases. Additionally, the percentage setting
appears to give a more predictable effectiveness trade-off than the
fixed setting.

Our next experiment explores the behaviour of the different
heuristic settings with respect to execution time. From each heuris-
tic, we select four configurations, and each retrieves the top-10 doc-
uments. For the fixed setting, we set c as ¢ = {5, 10, 15, 25} million
postings, and for the percentage setting, we set z = {20, 40, 60, 80}.
We also run an exhaustive instance of Jass. The results are shown
in Figure 3. As expected, fixing p to be a constant value allows for
strict control of the upper-bound processing time, whereas using
percentage-based settings may result in more variance.

So, to answer RQ1, the added control on the effectiveness trade-
off provided by using percentage-based heuristics results in a loss
of control on the tail latency. Conversely, fixing p, while reducing
effectiveness, allows very strict control of the tail-latency.

4.3 Impact of Threading on Efficiency

Next, we wish to test the efficiency of our proposed parallel ex-
tension to the JAss system, and in particular, how the number of
threads impacts the efficiency of the processing for varying query
lengths, thereby showing the improvements of our proposed ap-
proach and answering RQ2. For simplicity, we assume that when
processing in parallel, we will exhaustively process all candidate
postings lists (p = Pexhaustive)- We ran the parallel version using
between 8 and 40 threads inclusive, increasing by 8 threads between
each run. We then calculated the speedup as the average percentage
improvement of the threaded run with respect to the exhaustive,
single-threaded run, across each query length (Table 2).
Somewhat unsurprisingly, we notice that the speedup for a given
number of threads generally increases as the length of the query
increases. This is because the processing cost for longer queries is
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Threads Query Length
2 3 4 5 6 7+
8 078 125 1.03 174 181 1.92
16 1.03 1.60 157 244 259 275
24 113 150 181 2.70 222 3.04
32 1.18  1.75 198 2.73 298 3.27
40 1.20 176 2.08 251 3.04 3.37

Table 2: Average speedup when adding threads to the processing
load. As the length of the query increases, so too does the speedup,
as the parallel portion of processing becomes larger for longer
queries.

dominated by the postings traversal, whereas the cost for shorter
queries is more often a combination of both the index initialization,
accumulator traversal, and so on.

More surprisingly, however, is the very low rate in which speedup
increases when adding more threads. Since the workload is divided
by allocating segments to threads, there may be cases where all
threads are not utilized (for example, when there are 24 worker
threads, but only 8 segments). This is due to the inter-segment
method in which the processing is divided - a single segment will
only ever be processed with a single thread. This implies that pro-
cessing will be at least as slow as the slowest running segment, a po-
tential bottle-neck which may be alleviated with intra-segment pro-
cessing, whereby a segment can be processed by multiple threads.
We leave further exploration into this phenomenon as future work.

4.4 Meeting Service Level Agreements

From the lessons learned in the prior experiments, we now at-
tempt to add selective parallelization [14] to the Jass system in
order to improve efficiency and effectiveness while meeting two
pre-specified SLAs. The proposed SLAs are realistic, and provide
strict time budgets on both the 95th (Pys) and 99th (Pg9) percentile
response latency:

® Py5 < 200ms, and
e Pgg < 250ms.

In addition, we wish to minimize effectiveness degradation when-
ever possible.

Efficiency Modelling. To efficiently predict the approximate run-
ning time for a query with p postings, we follow Lin and Trot-
man [20] in building a simple linear model. We sampled 1,000
web queries from a MSN query log [8], and ran them across our
ClueWeb12-B13 index using various fixed settings of p, collecting
both the number of postings processed and the corresponding effi-
ciency in milliseconds. We then derive our model by conducting a
linear regression on the time taken and the postings processed for
each query. The linear model is a good fit for the sample queries,
with a coefficient of determination R? = 0.926. Our model can be
used to predict the largest value of p that is acceptable for a given

time bound t:
t —35.541

2.28 1073
We note that many more advanced prediction models have been
explored in the literature, especially for quantifying the processing

mp(t) =
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Figure 2: Density of wins, ties and losses, when comparing the heuristic settings with the exhaustive run, across all queries. The leftmost
plot uses the fixed p heuristic, whereas the rightmost plot bases the value of p on a percentage of the postings on a per-query basis. Setting p
based on the percentage of candidate postings appears to give greater effectiveness control than selecting a system-wide fixed value of p.
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Figure 3: This figure shows the efficiency of various heuristic settings for p across all queries. Diamonds denote the mean efficiency. Fixed
settings of p tend to exhibit very little variance as query length increases, whereas the percentage-based settings exhibit more variance.

time of DAAT or TaAT traversal [14, 16, 23, 24]. These models are
almost certainly overly complicated for SAAT traversal prediction,
as SAAT traversal is sensitive only to the number of postings to be
processed [6].

Baseline Systems. The most obvious baseline is the exhaustive,
single-threaded system. This system exhaustively processes all
queries in a single-threaded manner, and provides the desired ef-
fectiveness that other systems should aim to achieve. Given the
various time/effectiveness profiles that can be achieved using the
different aggressiveness heuristics, we employ several instances
of each as baseline. For the ppy.q baseline, we set ¢ = 5 million
as suggested by Lin and Trotman, as well as ¢ = 7 million (which
corresponds to the calculated upper-bound p to meet the Pos SLA).
These systems are denoted ‘Fixed-c’, where ¢ corresponds to the
fixed constant used. For ppercentage, We let z = {20, 40, 60, 80}, and
denote these systems as ‘Percentage-z’ (or ‘Perc-z’).

Selective Parallelization. Next, we propose a number of hybrid
approaches which use selective parallelism to accelerate queries

which are predicted to run slowly. The key idea with selective par-
allelization is to only parallelize queries which are predicted to
run slower than the given budget, as parallelizing short queries is
often a waste of resources [14]. Based on our model, we know that
queries with more than 7 million postings are likely to exceed the
200ms time budget, so we parallelize any query with over 7 million
candidate postings. We exhaustively process all queries (and thus,
lose no effectiveness), and call this system Selective Parallelization
(SP). Another hybrid approach is to use aggressive processing on
top of the selective parallel system, where the parallelized queries
will be used in conjunction with the fixed heuristic. We use 3 large
values of ¢, namely ¢ = {20, 50, 100} million, as this value is divided
equally among the processing threads (that is, each of the n threads
will have a local p of %) This approach is called Aggressive Selective
Parallelization (ASP-c).

We run all aforementioned systems across the entire 5,862 queries,
each system retrieving the top-10 documents. Table 3 shows both
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the efficiency and effectiveness results for this experiment for dif-
ferent numbers of worker threads.

Effectiveness Analysis. In general, the SP/ASP systems outper-
form the fixed and percentage heuristic systems with respect to
effectiveness, as they often process more postings than their coun-
terparts. For example, the SP system exhaustively processes all
queries, and thus loses no effectiveness. In addition, the Fixed-7M
system outperforms the Fixed-5M system and all of the percentage
based systems except for Percentage-80. The aggressive SP systems
were generally at least, if not more, effective than the Fixed-7M
system, except for ASP-20M with 32 and 40 threads. Note also that
the ASP systems tend to become less effective as more threads are
added, because the stopping rule is met more readily.

Efficiency Analysis. First, we examine the baselines presented in
Table 3. The Fixed-5M configuration, based on the recommended
value of ¢ from Lin and Trotman, was able to meet the efficiency
SLAs quite easily. In addition, the linear prediction model was quite
accurate in predicting that processing 7 million postings is possi-
ble within the given budget, as the Fixed-7M model was also able
to meet both SLAs. Conversely, the percentage based systems all
violate both SLAs with the exception of Percentage-20. Next, we
examine the efficiency of both the selective parallelization and the
aggressive selective parallelization systems for a number of differ-
ent worker threads. As expected, selective parallelization is able
to accelerate the exhaustive processing. For example, the safe-to-k
SP systems are between 1.5X and 2.3x faster than exhaustive pro-
cessing when considering the mean latency, and 1.5X to 3.5X faster
when considering the 99th percentile latency, with no effectiveness
loss. However, all of the SP variants violated the service level agree-
ments, as they could not effectively control the tail latency of the
postings traversal. Fortunately, the aggressive SP methods were
generally able to meet the SLAs, while achieving a higher effective-
ness than the fixed systems. For convenience, Figure 4 summarizes
the timings for the various systems, including the mean, median,
P95 and Pyg latencies. Based on our findings, the best approach
for efficiently processing longer queries without a large reduction
in effectiveness is to use parallel processing to accelerate them,
while still processing a high percentage of the candidate postings
to ensure effective results are returned, thus answering RQ3.

Scalability for Large Candidate Sets. As a final experiment, we
run our multi-threaded implementation of Jass exhaustively across
all queries, retrieving the top-10,000 documents for each query.
As in earlier experiments, we use 8, 16, 24, 32 and 40 threads. The
aim of this experiment is to understand the scalability of the multi-
threaded implementation when retrieving large sets of candidate
documents, as is necessary in modern, multi-stage retrieval sys-
tems [12, 27]. In comparing the runs which retrieve the top-10,000
documents to those which retrieve the top-10 documents, we find
that the large increase in k only results in increases of mean time
of between 5.5 and 10.3 ms. This makes sense given that the same
amount of work was conducted in processing the postings lists
(which dominates the processing time) regardless of k.
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System Time NDCG@10
Mean Median Pos Pyg Mean % W/T/L
1 Thread

Exhaustive ~ 309.9 2704 7365 973.6 0.1588 -/-/-
Fixed-5M" 103.8 120.7 129.7 1321 0.1534 11/74/15

Fixed-7M' 135.2 156.3 184.6 189.6 0.1541 8/81/11

Perc-20" 69.3 56.5 171.2  231.0 0.1499 21/52/27

Perc-40 134.2 106.5 350.4 486.4 0.1538 15/67/17

Perc-60 167.6 132.3 423.2 5939 0.1569 12/77/11

Perc-80 260.3 222.8 625.0 842.6 0.1590 7/87/6
8 Threads

SP 207.9 186.1 414.6 630.4 0.1588 -/-/-

ASP-100M 187.3 190.5 354.1 423.1 0.1587 2/96/2
ASP-50M 179.6 182.5 328.1 379.1 0.1580 4/92/4
ASP-20M 153.5 167.8 2414 2553 0.1563 8/84/8

16 Threads

SP 153.8 150.8 267.9 3543 0.1588 -/-/-

ASP-100M 149.8 151.6 252.6 2844 0.1587 2/96/2
ASP-50M 143.0 145.8 2433 270.0 0.1577 3/93/4
ASP-20M" 128.4 139.9 189.9 200.0 0.1559 7/84/9

24 Threads

SP 146.8 151.1 251.7 316.0 0.1588 -/-/-
ASP-100M 138.5 147.1 227.7 2574 0.1583 2/95/3
ASP-50M 136.8 147.7 2149 2437 0.1572 4/91/5

ASP—ZOI\/IT 120.4 135.6 164.5 172.2 0.1556 9/81/10
32 Threads
SP 135.4 138.9 219.5 277.9 0.1588 -/-/-

ASP-100M 131.8 139.9 207.7 241.6 0.1580 2/95/3
ASP-50M " 127.8 136.4 1935 2225 0.1571 4/90/6

ASP—ZOI\/IT 114.4 125.2 159.2 169.8 0.1538 8/80/12
40 Threads
SP 134.9 139.3 2163 273.3 0.1588 -/-/-

ASP-100MT 1288 137.5 199.3  229.6 0.1577 3/94/3
ASP-50M " 124.9 135.5 183.6 207.3 0.1567 5/89/6
ASP-20M" 109.7 120.3 150.6 169.4 0.1528  9/78/13

Table 3: Time and effectiveness trade-offs for the various ap-
proaches. T denotes that a system did not violate the SLAs. W/T/L
corresponds to the percentage of Wins/Ties/Losses with respect to
the exhaustive system.

5 DISCUSSION AND FUTURE WORK

A major assumption of this work is that longer queries generally
have more candidate postings. Although this is often true, it is
not always the case. Furthermore, different methods of splitting
the workload for multi-threaded processing may result in greater
speedup and improved resource allocation and load distribution. For
example, we did not consider threading policies which allow work
stealing, where idle threads will help further divide the workload
from busy threads. This idea could be implemented by allowing
intra-segment processing, where many threads are able to divide a
single segment into many smaller blocks of work. Finally, modern IR
systems would typically use Jass for early-stage processing, known
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as candidate-generation, which is a recall-oriented task. Given the
limitations of current collections, query logs, and judgments, we
are unable to effectively explore the merits of each heuristic in a
recall-oriented scenario. We leave these ideas for future exploration.

6 CONCLUSION

In this work, we explored several early termination heuristics for
score-at-a-time retrieval. We found that percentage-based heuristics
are more stable with respect to their effectiveness behaviour, but
suffer from increased tail latency with respect to the fixed heuristics.
Conversely, the fixed heuristics are able to manage the upper-bound
efficiency, but are not able to guarantee effective results, especially
for longer queries. Furthermore, we showed that SAAT systems can
benefit from using multiple worker threads to accelerate longer
queries, allowing for improved effectiveness without loss in effi-
ciency. In particular, using selective parallelization with per-thread
aggressiveness provided the best trade-off, outperforming fixed-
parameter systems for both efficiency and effectiveness when the
number of worker threads was sufficiently high.
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