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ABSTRACT

Dense indexes derived from whole-of-document neural models are
now more effective at locating likely-relevant documents than are
conventional term-based inverted indexes. That effectiveness comes
at a cost, however: inverted indexes require less than a byte per
posting to store, whereas dense indexes store a fixed-length vector
of floating point coefficients (typically 768) for each document,
making them potentially an order of magnitude larger. In this paper
we consider compression of indexes employing dense vectors. Only
limited space savings can be achieved via lossless compression
techniques, but we demonstrate that dense indexes are responsive
to lossy techniques that sacrifice controlled amounts of numeric
resolution in order to gain compressibility. We describe suitable
schemes, and, via experiments on three different collections, show
that substantial space savings can be achieved with minimal loss of
ranking fidelity. These techniques further boost the attractiveness
of dense indexes for practical use.
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1 INTRODUCTION

As dense retrieval models continue to increase in popularity, man-
aging their large storage footprints is a growing challenge. A body
of prior work has focused on minimizing the size of dense indexes
to accelerate training or retrieval speed [4, 21, 26], but the prob-
lem of long-term dense index retention has not yet been widely
explored. This complementary aspect is an important direction for
both researchers and practitioners, as it allows older versions of an
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Table 1: Compressed size (fraction of uncompressed size) of gen-
eral purpose compression tools with high compression settings
(slower to code, but better compression) on the three dense indexes
described in Section 4. Smaller values are better.

Codec Con-Arg DPR-Wiki ANCE-MARCO
gzip -9 0.926 0.926 0.923
bzip2 -9 0.949 0.948 0.947

xz -9 0.911 0.904 0.901
zstd 15 0.922 0.925 0.922

index to be resurrected if and when the need arises, for purposes
such as reproducibility, repeatability, recovery, and sharing.

One obvious approach for preserving indexes between uses is
to compress them with a general purpose tool such as gz or xz.
However, as Table 1 demonstrates, general purpose lossless (exact)
compressors do not gain much traction on floating point data, with
typical reductions of just 10% of the uncompressed index size. On
the other hand, lossy techniques provide better compression, but
risk eroding the quality of the index, and hence its utility.

We explore both lossless and lossy compression mechanisms for
the storage of dense indexes. Our contributions are as follows:

e We cast the problem of index retention as a trade-off between
storage consumption and result quality;

e We analyze the suitability of both lossless and lossy compression
schemes for the task of dense index compression;

e We propose a family of simple lossy quantization methods that
meet the particular requirements of dense indexes; and

e We demonstrate that our approach allows highly competitive fine-
grained selection of storage/quality trade-offs for dense index
retention, where quality is measured by ranking similarity.

2 COMPRESSING AND STORING INDEXES

This section summarizes dense indexing approaches, describes float-
ing point number representations, and provides an overview of
lossless and lossy compression techniques as they apply to text
indexes. We assume a collection D containing r documents, with
the i th of those documents denoted D;.

Dense Retrieval. In a single-representation dense index, each
document Dj is represented as a fixed-length vector of ¢ floating
point numbers, positive and negative, that are inferred by a large
language model or neural network. Broadly speaking, each of those
c values represents some kind of learned or inferred attribute, per-
haps “animals”, or “sport”, or “business”, or “Asia”, or “youthful”,
with positive values in that column indicating degrees of support
for that inferred concept in D;; negative values indicating degrees
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of anti-support; and values near zero representing ambivalence.
The index for the r documents in D can thus be visualized as an
r X ¢ matrix M of floating point values. The topical affinities of the
¢ columns are implicit and not identified in any way - there are no
column labels or vocabulary — and the columns have no observable
distinguishing properties.

Each incoming query Q is similarly mapped to a vector of ¢
positive and negative values. The similarity between a document
D; and query Q is then computed via:

c—1
S(Di,Q) = Y MIi,j1-QlLjl. (1)
j=0
To generate a top-k answer set for a query Q, a retrieval system
must either exhaustively compute all r scores S(D;, Q) via r inner-
product computations, and then select the k largest values; or must
pre-compute some sort of c-dimensional nearest neighbor index
structure that allows the top k set to be identified more efficiently.

Our emphasis in this paper is on the permanent storage required
by the matrix M[-, -], rather than any derived index structures to
accelerate query processing.

Floating Point Formats. Most hardware platforms offer two stan-
dard floating point types: float32 and double-precision float64.
These consist of three components: one bit for a sign; 8 or 11 bits
for a binary exponent; and 23 or 52 bits for a binary mantissa, not
counting the leading mantissa bit which is always a 1 and does not
require storage, in effect supplying a 24 th or 53 rd bit of mantissa
precision. The relevant standard! also allows a float16 format
that contains a sign bit, a 5-bit binary exponent, and a 10-bit (plus
one hidden bit) mantissa; a format that may only be available on
certain language/compiler/hardware combinations. Some hardware
platforms also offer a 128-bit long double format that has a 15-bit
exponent and a 113-bit mantissa.

In each of these formats the three components can be thought
of as three plain binary integers of S, E, and M bits each, where
(S, E, M) is used to summarize the arrangement. If 0 < s < 25 is the
sign,0 < e < 2F is the exponent, and 0 < m < 2M is the mantissa,
they combine to indicate the fractional value

E,
(1—25)- 26727 41 (oM 4y oM,

in which the division yields a real number.

Like all finite-precision representations, some numbers can be
represented exactly, while others — the majority — are approxima-
tions of the original true values. For example, 0.5 and 0.75 both
have exact representations in binary-based floating point represen-
tations, but 0.6 and 0.7 do not. The top section of Figure 1 shows
the float32 representation of 7 ~ 3.1415, with s = 0, e = 128, and
m = 4,788,187 required relative to (S, E, M) = (1, 8,23). Our focus
in this work is on numbers that have their origins in this single
precision float32 format. Their 24 mantissa bits are equivalent to
about seven decimal digits of precision, a situation consistent with
the top section of Figure 1, in which the magnitude of the error in
the float32 representation of 7 is a little under 10~7. The second
part of Figure 1 is discussed shortly.

'IEEE.754, see https://standards.ieee.org/ieee/754/6210/ and https://en.wikipedia.org/
wiki/IEEE_754.
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Figure 1: Floating point layout and the “normal” rounding error
inherent when 7 is represented as a float32; then applying further
mantissa truncation to form a bfloat20.

Index Compression. Conventional inverted indexes are highly
compressible, and each occurrence of a distinct word in a document
(a posting) can typically be represented in around one byte when
compressed, see, for example, Zobel and Moffat [28] and Pibiri and
Venturini [16]. That means a document containing 100 distinct
words (and thus maybe a few hundred words in total, or around
1 kB of plain text) requires around one hundred bytes of index
storage. In model-based dense representations, the same document
might correspond to ¢ = 768 floating point values, each of which
requires 4 bytes — that is, a factor of 30 times as much space.
Inverted indexes are compressible because when they are con-
sidered as term-document frequency matrices (with the terms as
the columns and the documents as the rows), the overwhelming
majority of cells are zero; and because, of the small fraction of cells
that are non-zero, the majority are small values. Those patterns do
not hold for dense vector-based indexes. Now the matrix entries
are all positive or negative floats, and almost none of them are
zero. That is, while these dense indices can provide more effective
similarity-based search over document collections, that gain has a
cost in terms of storage space. Moreover, if a dense index is to be
retained on disk and used in memory only periodically, disk storage
might be a substantial fraction of the overall resource requirements.

Lossless Compression of Floats. Structural modeling, probabil-
ity estimation, and entropy coding - the techniques behind any
compression regime — are well understood [14]. It is not possible
to directly model and entropy code a stream of 32-bit floats, be-
cause the fact that there are 232 distinct values available means
that unless the input matrix M-, -] is huge, the cost of storing the
entropy coder’s parameters will swamp the modest savings that
are available.

An alternative is to “deinterleave” the (S, E, M) components of
each float32 to make three parallel sequences of range-bounded
integers. It is then possible to apply any suitably parameterized
entropy coder to each stream of integers, and thereby compress the
original stream of floating point values. For example, if there is a
strong imbalance between positive and negative values, the sign
bits might take less than one bit each to store; and if the exponents
are dominated by a small set of the 2F possible values then savings
might be achieved in that stream too. On the other hand, floating
point mantissas tend not to be compressible. Their low-order bits
are, to an entropy coder, essentially random data, and so do not yield
any significant space savings. In this case simply storing a stream
of 23-bit integer values (packed so that 32 such values occupy 23
four-byte words) is a better option.


https://standards.ieee.org/ieee/754/6210/
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

Table 2: Cost (bits per number) of losslessly coding the (S, E, M)
components of a dense index of 6,661,632 float32 numbers (the
Con-Arg index). The rates shown in the first three rows would be
achieved by an arithmetic coder (see Moffat and Turpin [14]) once
the probability distributions were available (the fourth row).

Component uncompressed bits/value

Sign S=1 0.96
Exponent E=38 2.57
Mantissa M =23 21.96
Preludes 2.75
Total 32 28.24

Table 2 demonstrates these effects using the smallest of our
three test indexes (see Section 4 for details). As can be seen, the
main source of redundancy in this set of float variables is via their
exponents, with an average of 5.43 bits per value able to be saved.
There is also a small “on paper” saving available via the mantissas, as
the distribution is slightly skewed in favor of small values. However
that possible saving is completely eroded, plus more, if the cost of
describing that distribution is factored in (shown in the “preludes”
row, noting that the sign and exponent distributions have very low
overhead costs because they involve only 2 and 256 parameters
respectively). The best that a deinterleaving approach can do on
this file is to save 5.43 bits by entropy coding the exponents while
simply bit-packing the other two streams, thereby reducing the cost
to 26.57 bits per float overall, that is, to 83.0% of the input file size,
slightly better than is available using general-purpose compression
tools such as gzip and xz (Table 1).

Lossy Compression. As already noted in connection with Fig-
ure 1, floats are almost always approximations, and there is nothing
special about using M = 23 bits for the mantissa. The same is
true for any data that has its origins in a signal that is continuous,
such as sound or images. For such data the use of lossy compression
might be a viable alternative. Fidelity relative to the initial set of
quantized-to-float values will be lost, but the eventual use of the
data may be unaffected. For example, lossy compression of audio
signals in MP3 files still yields excellent sound quality, with the
difference between MP3 and original uncompressed 16-bit signals
(CD quality) only able to be detected by an audiophile; and the lossy
compression of video data in MP4 files might not be noticeable to a
person watching on a standard TV.

One simple way that the storage cost of general floats can be
reduced is via mantissa truncation, shown in the lower section of
Figure 1. In this example the original 23-byte mantissa is truncated
by 12 bits, to be an 11-bit mantissa instead, a saving of 12 bits per
float. The difference between the stored value and the original value
increases, but a downstream task — for example, a laser-based tool
cutting a circular steel plate — might not be affected by the loss of
precision. The Google bfloat16 is a truncated float32 that has
the pattern (1, 8, 5), with 16-bit mantissa truncation.? We will use
truncated floats — with the value shown in the lower section of
Zhttps://cloud.google.com/blog/products/ai- machine-learning/bfloat16- the- secret-

to-high-performance-on-cloud-tpus, by Shibo Wang and Pankaj Kanwar, accessed 15
May 2023.

Figure 1 regarded as being a bfloat2@ - as a baseline for lossy
representations in the experiments described in Section 4.

Other Index Reduction Methods. Another way to reduce the
cost of a c-dimensional vector of real values, the type used in dense
retrieval, is to simply reduce the total number of dimensions re-
quired, while noting that doing so will also probably reduce retrieval
effectiveness. Prior work has explored the use of unsupervised meth-
ods to reduce dimensionality including random projections (select-
ing a random subset of dimensions) and principal component anal-
ysis (selecting dimensions with the highest variance) [13, 15, 29].
We explored the use of dimensionality reduction in preliminary
experiments but found that it was not competitive with the lossy
mechanisms explored in this work, and we omit them for brevity.

Product quantization (PQ) is another approach for reducing the
storage requirements of dense indexes [7]. The main idea behind PQ
is to partition the original c-dimension embedding into a sequence
of ¢’ /¢ dimension sub-vectors, each of which can then be quantized
independently via k-means, and stored via a mapping to a dictionary.
In our experiments, we explored PQ with dictionaries of 256, 4096,
and 65,536 entries, and with ¢’ /c € {1/2,1/4,1/8,1/16}.

Finally, there are a number of supervised approaches for reducing
the size of dense indexes during training [3, 5, 12, 19, 24, 27], often
with the dual aim of accelerating retrieval. We do not consider
these methods in this work; our goal here is to compress and retain
deployed indexes for future reference, rather than minimize their
size at the time they are being accessed.

3 LOSSY DENSE INDEX REPRESENTATIONS

This section introduces methods for quantizing a set of float32
values in ways that are tailored to the set of values needing repre-
sentation, and in a way that also indirectly exploits the cost savings
possible via the exponent part of floats (Table 2).

Domain- and Range-Quantization. Suppose that a set S con-
taining n float32 values is to be lossily represented using B < 32
bits per value. In the dense indexing application considered here we
will have n = r X ¢, but the techniques we consider can be applied
to any stream of floating point values.

One obvious option is to design a (S, E, M) representation in
which S + E+ M = B, in the style of the IEEE float16 and Google’s
bfloat16 approaches. But as has been demonstrated in Table 2,
this may be wasteful, with some combinations of the B bits likely
to be rare or unused in any given input file.

An alternative is to note that 2B different bit patterns are possible
using B bits, and to assign those to a set of ordered bins that are
created in some way that spans the range of values in S. The
binning process should then assign the smallest value in S to bin 0,
and the largest value to bin 25 — 1. Every other value in S would
also map to a bin identifier between 0 and 25 — 1 inclusive. Each
bin would have a representative value associated with it, to serve as
a computational surrogate for all of the values in that bin. The set
S would then be lossily represented by a sequence of n integer bin
identifiers. That representation will be useful if the downstream
task (in this case, computing inner-products via Equation 1) yields
results that are unlikely to be “noticed as being different” by an
average (or some other definition, such as “a 95% astute”) user.
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Figure 2: Cumulative distribution of floating point values in the
Con-Arg index (6,661,632 float32 values, see Section 4 for details).

This overall structure then leads to several design decisions:
methods for deciding which ranges from S are placed in each
bin; methods for determining the representative value to associate
with each bin; methods for efficiently storing sequences of integer
bin numbers; and methods for measuring the degradation of some
downstream outcome when comparing it against the “full” float32
outcome - again noting that the float32 is also an approximation
of some unknown “true” value on the continuous real number line.

Choice of Binning Strategy. Figure 2 shows the distribution of
floating point values in one of the experimental indexes described
in detail in Section 4. The float32 values in this file span the
range from approximately —0.5 to +0.5, with three somewhat linear
segments visible: a steep climb at the beginning, indicating that
there are a small number of strongly negative values; then a long
slow-growth segment; and then a second steep section at the right-
hand side, indicating a small number of strongly positive values.
There is also a moderate asymmetry: in this index 61.2% of the
stored values are negative, and only 38.8% of the stored values are
positive. There are no index values that are zero.

One obvious binning strategy is to divide the horizontal scale in
Figure 2 into regions of equal size. We call this the FD approach,
fixed domain binning. If there are n values to be represented via
B-bit bucket identifiers, each bucket will contain approximately
n/ 2B values, and will have a representative value from within the
corresponding range. The clear drawback of this options is that in
a region of rapid change in values, fixed domain binning is likely
to result in high approximation errors, and a consequent risk of
degradation in the effectiveness of the downstream operations.
Moreover, those high errors would occur at the two ends of the
range, and be prevalent in high-magnitude values.

A second option is thus to form fixed-interval bins according to
the vertical axis employed Figure 2, to create FR (fixed range) bins
that each have a variable number of elements. The FR approach
offers control of numeric errors, since the representative value used
in regard to each bin will have a known upper bound difference
between it and every value represented by that bin. In particular, if
the numeric mid-point of each bin is taken as the representative
value, and if x is a true value and X the corresponding representative
value, then |x — £ < (max(8S) — min(S))/25+1.

The drawback of the FR mechanism is that some bins might
remain empty while others have a large number of data points
in them. As a specific example, outlier values at either end of the
range might give rise to dozens of empty bins, thereby reducing
the effective resolution of any given parameter B.

As a blend between these two approaches we introduce two
further heuristics, both of which ensure that every bin has at least
one valid value in it, and at the same time result in high bin density
at regions of rapid change in values. As can be seen in Figure 2, the
beginning and end of the range are where a dense bin concentration
is required if maximum error is to be bounded. Conveniently, it is
also at the extremes of the range from which the greatest contribu-
tions to document scores might arise (see Equation 1), and hence
where it might be supposed that numeric fidelity is most important.
These observations suggest the first of the two additional strategies:
a bin allocation function that consists of a geometric distribution
and its symmetric reflection.

Consider the geometric sequence governed by a parameter 6
and initial value v when taken to r terms and summed: v + v6 +
00% + 003 + - + 00" = 0(0" — 1)/(r — 1). If there are 2B bins to
be assigned, then half will be left of the mid-point, and half to the
right, and the total of all of the bins left and right must be n. These
relationships mean that 6 needs to satisfy

v-(0"-1)/(0-1)-n/2=0, (2)

where r = 2B /2, which, given B, n, and v, is straightforward to
solve using bisection. The simplest arrangement is when v = 1 and
the leftmost and rightmost bins contain just a single item. The i th
and 2B — i — 1th bins will similarly be assigned bin boundaries so
that they span exactly 67 of the n index values each, with a pair
of middle bins being the largest. Those middle bins — and their
neighbors near the middle of the range — will each hold a large
number of values close to zero (but not necessarily “closest to” zero,
noting again the asymmetric distribution in Figure 2, which is also
visible in the FR line in Figure 3). An implementation needs to work
with a real-valued 6 but rounded-off integer bin sizes, and needs to
also handle cases in which n is odd; the details are slightly tedious
but not complex, and we omit discussion of them here. We refer to
this approach as the GD method, for geometric domain.

The second heuristic we suggest, and the fourth binning strategy
overall, is to use the FD approach for the central 2B-1 bins, and to
store the smallest 2872 and largest 2872 values in single-element
bins, that is, as exceptions that are represented exactly. For example,
when B = 8, the smallest and largest 64 index values each occupy
an assigned bin in isolation, and the remaining n — 128 values are
assigned to the central 128 bins via a restricted application of the FD
method. The fraction of the 28 bins assigned to the central region
introduces another parameter; for simplicity, we set that fraction
at 1/2 in all of the experiments reported here.

We call this the CFR approach, central fixed range. The average
error in the central region will be greater than with the FR approach,
but that might be compensated by having no loss for a small number
of values at the extremes of the score range, and by greatly reducing
the likelihood of empty bins occurring.

Figure 3 shows the result of applying these four approaches to
the same index data as was used in Figure 2, plotting bin size as
a function of bin number (expressed on the axis as a percentage
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Figure 3: Bin sizes for B = 8 using four different strategies. Note
the logarithmic vertical axis; the bins of size zero generated by
the FR approached are plotted at a size of 0.5. Bin indices on the
horizontal axis are expressed as a percentage of 28 = 256.

of 256) for B = 8. The FR and CFR approaches give irregular bin
sizes because they are defined via the range of stored values rather
than the domain; the other two use bin sizes directly computed
from B, n, and the bin number value. Note how the GD approach
(which uses a computed parameter 6 = 1.105) approximates the
distribution of the fixed range FD method, but without the risk of
empty bins being created. For the data shown the FD mechanism
generates 11 empty bins; whereas there are no empty bins in the
other three approaches.

Choosing Bin Representatives. Given a set of numbers that are
the members of a bin, we also need a mechanism for selecting a
single value to represent them all. Several options are obvious: we
could take the arithmetic mean of the values in the bin, or their
median, or the midpoint between the largest and the smallest value
in the bin. If the bin contains only one or two elements, all three
of those approaches are identical. If the bin has a large number of
elements and is not in a region of sharp curvature (see Figure 2),
then the three will again likely result in similar outcomes. In the
experiments reported in the next section we use the average of the
bin’s assigned values, choosing that approach because it minimizes
the total error magnitude when summed across the set of values
assigned to that bin.

Figure 4 illustrates the relationship between maximum bin error
(that is, the biggest magnitude difference between bin mean value
and the upper and lower extreme values) and the bin number (again,
expressed as a percentage of 256) for the same data as was plotted in
Figures 2 and 3. As expected, the FD approach has very large error
magnitudes at the ends of the distribution (so large that they are
clipped in the graph, the highest value is 0.235, nearly thirty times
the axis that is shown); the FR approach has near-constant maxi-
mum error; and, by design, the CFR method has a higher maximum
error in the central region, but zero error at the extremities.

Coding Bin Identifiers. If there are 2B bins, then each float32
value in the index can always be represented by a B-bit binary bin
number. But if an entropy coder is applied to the sequence of bin
identifiers, it may be possible to do better, perhaps substantially so.
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Figure 4: Bin maximum errors for B = 8 using four different
strategies. Note that the FD curve has been clipped at the left and
right extremities. Bin indices on the horizontal axis are expressed
as a percentage of 28 = 256, as was also the case in Figure 3.

Table 3: Cost (average bits per approximated index value) of storing
a binned index covering 6,661,632 floating point values using four
binning methods and a range of bin counts.

Number of bins employed

Method
256 910 1050 1430
FD 8.00 9.83 10.04 10.48
FR 6.17 8.00 8.21 8.65
GD 5.77 7.77 8.00 8.49
CFR 5.40 7.32 7.54 8.00

If ny, is the number of index values assigned to bin 0 < b < 2B by
the partitioning regime, with }}; nj, = n, then an effective entropy
coder can represent each instance of n;, using log, (n/n;) bits on
average [14], and store the entire stream using 35 ny, log,(n/np)
bits. Moreover, coding in this way means that the number of bins
need not be a power of two. In the experiments reported in Section 4
we employ arithmetic coding and allow the bin count to be an
arbitrary integer.

In particular, looking again at Figure 3, it is clear that the distri-
butions of bin occurrence counts in index data is highly skewed
under the FR, GD, and CFR approaches. Table 3 shows the extent of
the savings that can then result via arithmetic coding rather than
binary coding. Down the table’s diagonal, a suitable bin count has
been identified for each of the four binning approaches so as to
result in an average cost of 8.00 bits per stored index value. The
four bin counts are listed across the top of the table, and vary from
256 for the GD approach to 1430 for the CFR method. The other
table entries then show the per-value cost of arithmetic coding the
same 6,661,632-value index using that combination of bin count
and binning method. As can be seen, the CFR method provides the
most compact index for any given bin count — in part because half
of the bins are quite deliberately assigned only a single value.

Figure 5 revisits the representational errors that arise from the
binning process, now plotting maximum errors by position in the
sorted distribution of values shown in Figure 2 rather than by
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Figure 5: Bin maximum errors for a constant bin entropy of 8.00 bits
per value (see Table 3), now plotted as a function of the underlying
distribution of stored index values (also used in the horizontal axis
in Figure 2). The FD curve has again been clipped at the left and
right extremities; the FR curve is almost exactly coincident with the
CFR one. Note the x4 change in vertical scale relative to Figure 4.

bin number (with those maximums still computed on a per-bin
basis). The four combinations of parameters in the diagonal of
Table 3 are shown by the four plotted lines, so that quantization
errors can be properly compared on an equal bit-cost basis. What
is now clear is that the CFR and FR methods have almost the same
error profiles except at the extreme endpoints; and that the other
two methods offer two further trade-offs between fidelity in the
center of the range of values and fidelity in the upper and lower
sections of the set of index values. The next section undertakes a
detailed exploration of these four lossy binning techniques, and of
the effect their differences in representational accuracy have on the
“downstream task” of similarity-based retrieval using Equation 1.

4 EXPERIMENTS

The upper half of Figure 6 shows the structure of the index reten-
tion capability envisaged in the previous section, with a float32
index analyzed by a binning component; the binning decisions then
used to assign bin indices to all of the index coefficients; and with
that sequence of bin indices arithmetically coded to form a lossy
compressed quantized index. The binning information must also
be retained, as it is required by the decoder, but is very small.

Based on that structure, this section describes the experimental
context and datasets, and then reports our findings.

Hardware and Software. All experiments were conducted on a
Linux workstation with a 32-core AMD Ryzen Threadripper Pro
5975WX operating at 3.6 GHz with 512 GiB of RAM.

The various approximation and quantization methods were im-
plemented using C and C++, and compiled with GCC 11.3 and -03
optimization. All other experimentation including product quanti-
zation and query processing was conducted using the highly opti-
mized FAISS library [8]. Our query processing experiments used
exhaustive search to ensure no confounding effects due to query-
time approximation or tie-breaking ambiguities, and our custom
software allows flat FAISS indexes to be directly saved, to ensure

a fair empirical comparison. We do not report query execution
times, since that is not our focus here; but do note that once a
binned-quantized index of the type discussed in Section 3 has been
decompressed and placed in memory, from a query-processing-
logic point of view it is identical in structure to the original index,
and can thus be processed using any of the same techniques.

Datasets and Queries. We experiment with three indexes, each
representing a unique system/collection pair:

e Contriever-ArguAna (Con-Arg): An index over the ArguAna coun-
terargument retrieval collection [20], as featured in the hetero-
geneous BEIR benchmark [18]. The index is built using the Con-
triever model [6], represents r = 8,674 documents each mapped
to ¢ = 768 coefficients, and occupies around 25 MiB of storage.

o DPR-Wikipedia (DPR-Wiki): An index over a Wikipedia® crawl,
built using the DPR model [9]. This index has r = 21,015,324
documents and ¢ = 128 coefficients per document, constructed
by product-quantization from an original 768 dimensions [13].
This index occupies about 10 GiB of storage as float32 values.

o ANCE-MSMARCO (ANCE-MARCO): This is an index for the
MSMARCO-v1 passage collection [2] using the ANCE model [23],
and represents r = 8,841,823 documents via a set of ¢ = 768
coefficients per document, using just over 25 GiB of storage.

All three are publicly available as part of the Anserini/Pyserini
open-source toolkit [11, 25].

A random sample of document vectors was taken from each
collection and used as queries, 2,000 vectors in the case of the small
Contriever-ArguAna index, and 10,000 vectors for each of the other
two collections. This “self validation” approach means that the
strongest match is always between a query and that same vector as
a document in the collection; thereafter the ranked list generated
for each query is a list of the other documents in decreasing order
of similarity relative to the query document. The top k = 1,000
documents were retrieved for each query and compared to the list
returned by a full-precision float32 index.

Measurement Objectives and Evaluation. Our key goal was
to measure the relationship between the fidelity of index-based
retrieval on the one hand, and index size when stored on secondary
storage on the other. That is, we regarded long-term model reten-
tion cost as being an important resource, and sought to minimize
that cost through the application of lossless or lossy compression
techniques. To ensure that we always compared like with like, all
indexes were assumed to be stored in compressed form. In particu-
lar, the quantized binned approaches introduced in Section 3 were
all compressed using a zero-order arithmetic coder, with the cost
of the auxiliary bin representative values included and requiring
four bytes each. Similarly, all of the other indexes used as baselines
are assumed to be compressed using xz -5 to reduce the space re-
quired to retain them on secondary storage, without any use of
deinterleaving. The “-5” quality level was chosen as a compromise
between reduced size and encoding speed. Table 1 provides some
indicative results obtained from the more costly “~9” variants.*

3See https://huggingface.co/datasets/wiki_dpr, accessed May 17, 2023.
“In preliminary experiments, we found that xz -9 often gave only minuscule improve-
ments over xz -5, and occasionally provided no or even reduced benefit.
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Figure 6: Structure of our experiments. The similarity between
SERPs generated from the float32 and an approximate index is
computed via an overlap computation (grey box at bottom) and
considered as a function of the compressed quantized index size
(the combined cost of the two blue boxes at top).

In all of the results presented below space is represented as
“fraction of 32 bits per value”, so that an index that is represented in
(say) an average of 12 bits per value is regarded as taking “space” of
12.0/32.0 = 0.375. Our objective is to achieve storage rates below
0.5 (that is, below 16 bits per index value) and still retain high-
accuracy ranking; and to achieve storage rates below 0.3 with only
minimal loss of retrieval effectiveness.

To quantify retrieval fidelity we make use of Rank-Biased Over-
lap (RBO) [22], always comparing the ranking of k documents
generated by an approximate index with a ranking of k documents
resulting from the “exact” (that is, f1oat32) index. In the first round
of retrieval experiments an RBO parameter of ¢ = 0.999 was em-
ployed. The benefits of this RBO-based approach are twofold. Firstly,
no annotations are required to determine quality, and the measure-
ment compares rankings solely on a “without approximation” and
“with approximation” basis. Secondly, quality is captured via very
deep listwise comparisons, which provide a high degree of confi-
dence in the quality of the approximated indexes. We also used an
unweighted overlap at k as a secondary measure. We report both
the median (Psp) and the 95 th percentile (Po5) RBO values.

In the second round of retrieval experiments, reported shortly,
we also make use of RBO and ¢ = 0.95, to simulate the effect of the
approximation on top-20 retrieval. This depth is appropriate if the
dense similarity computation (Equation 1) is being used in the final
stage of a multi-stage ranking pipeline.

The lower half of Figure 6 shows the experimental pipeline we
have assembled, with queries executed against the original float32
index and each of the approximate indexes, and then the origi-
nal SERPs compared with each of the corresponding approximate
SERPs using one or more of the overlap computations.

Experiment One: Sensitivity to Error. To confirm our conjecture
that the most negative and most positive coefficients are the ones
with the greatest influence over the documents placed near the head
of the eventual ranking, we carried out a sensitivity experiment.
Figure 7 shows the outcome of that exploration. To construct the
graph, the 6,661,632 coefficients in the Con-Arg collection were
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Figure 7: Single bin perturbation of index coefficients. Each plotted
point represents an index in which a band of 1/128 of the coeffi-
cients have a small random quantity added or subtracted, and then
retrieval fidelity is measured. Sensitivity is greatest for bins at the
ends of the range of coefficient values.

assigned to 128 equal-sized bins using the FD strategy. Taking one
bin at a time as the focus, every value in that selected bin was
then perturbed by a small random amount, thereby simulating the
effect of the bounded error that might arise if the FR strategy was
used. More precisely, each value x in the focus bin was replaced
by a uniform-random value in the range [x — €,x + €]. All other
values were held unchanged, and only one focus bin at a time had
its values disrupted.

We then carried out a full retrieval run, and measured the re-
sultant ranking degradation using 95 th percentile RBO and the
parameter ¢ = 0.999, with the curves in Figure 7 showing the extent
to which each individual focus bin can affect overall retrieval fi-
delity. Moreover, because there is a constant number of elements in
each of the focus bins, and a constant scale of disturbance applied to
each of elements within them, the total volume of introduced error
remains the same for each retrieval run, and fidelity can be fairly
compared across the set of focus bins, that is, across the spectrum
of coefficient values (the horizontal axis in the Figure 7). That entire
process was repeated for three different values of €. As is clear from
the three plotted lines, the extremes of the coefficient range are
where there is the greatest susceptibility to disruptions, and hence
they are the regions in the range at which we can expect to need
to have the smallest per-coefficient errors.

Experiment Two: First Stage Retrieval. Taken together, Fig-
ures 5 and 7 suggest that the FD method will not be an effective
binning mechanism. Figure 8 confirms that outcome. Each pane
shows one of the test collections, and each plotted point shows a
possible trade-off that is available between stored index size on the
horizontal axis, and ranked retrieval fidelity on the vertical axis. In
this arrangement the top-left corner represents “perfection”; and
each marked line corresponds to one method, with points at the
top-right generated by high-precision approximations, and points
trending to the lower-left as the lossiness grows via increasingly
coarse approximations. In the case of the lossy quantized binning
methods described in Section 3, the points on each curve from
top-right leftward represent 4096, 2048, 1024, 512, 256, 128, 64, 32,
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Figure 8: Trade-off curves showing the relationships possible between stored index size (as a fraction of 32 bits per index value, logarithmic
scale) and answer fidelity when scored with RBO and ¢ = 0.999 on lists of k = 1,000 answers. Three different collections are used and seven
different representations for index coefficients. The RBO values plotted represent the 95 th percentile over the respective query sets.

and 16 bins respectively. The “X” at top-right of each plot indicates
the location of the original float32 index in this trade-off space.
We reiterate that all indexes are assumed to be stored compressed,
hence the “X” falling near 0.9 on the horizontal axis.

The FR, GD, and CFR approaches are absolutely superior for
two of the collections, with very little to separate them in terms of
“fidelity for size” performance; and are outperformed only by the
complex PQ method in the low-fidelity part of the trade-off space
for the third collection. As was anticipated above, the FD method
is not competitive, and even the truncated (S, E, M) = (1,8,0 — 9)
bfloat-v floating point method offers a more attractive trade-off.
Relative to the other three binned approaches the FD method suffers
because it both allows high errors at the extremes of the coefficient
range, and also gives rise to a uniform bin frequency distribution
that does provide further space savings when the arithmetic coding
stage is applied.

As already noted, the three graphs in Figure 8 reflect fidelity
measurements recorded at the 95 th percentile (that is, 95% of the
measured values across the query sets are higher than the points
plotted). Very similar relationships at slightly higher RBO values
arise if medians are used instead of 95 th percentiles, and we do not
include those further graphs.

Experiment Three: Final Stage Retrieval. Figure 8 measures
the effect of lossy approximations on deep retrieval, with RBO
at ¢ = 0.999 representing users who in average want their top-
1,000 documents to be the “correct” set. This expectation might
be associated with the fetching of a set of documents as part of a
first-phase retrieval process, for example. Table 4 switches focus
to shallower expectations, and repeats the experiment, but now
using ¢ = 0.95, simulating users who are on average intending to
view the first 20 elements in the resultant rankings and want to
know the extent of the overlap that will arise. This corresponds to
final-stage ranking. Both median and 95 th percentile RBO scores
are presented.

As can be seen from the table, the relationships between the
various methods are very similar to what was already observed —
indeed, when plotted as trade-off graphs, the overall pattern again

matches those illustrated in Figure 8. That is, for both shallow and
deep retrieval, the FR, GD, and CFR approaches all allow very fine-
grained adjustments to be made in a highly competitive region of
the trade-off space between cost of permanently storing a dense
index in lossily compressed form on the one hand, and retrieval
fidelity on the other.

Time. While our primary focus in this investigation has been the
relationship between long-term index storage space and retrieval
accuracy, it is also interesting to consider the execution times for
the various transformations that are involved, taking as a common
starting point a float32 dense index stored on SSD.

The binning process at the center of the approaches described
in Section 3 requires that the complete index be sorted by value,
and provided to a “quantizing” program that determines the bin
boundaries and their representative values. Taking the largest index
in all cases (ANCE-MSMARCO), the sorting cost was 937 seconds
total CPU, executing in parallel taking 57 seconds elapsed time
when allowed to use 32 threads. The quantizing decisions were then
made in a further 40 seconds using a single thread. The third step,
mapping index coefficients to bin numbers and then arithmetically
coding those bin numbers, required between 300 seconds (64 bins)
and 480 seconds (2048 bins) using a single thread, with the variation
directly connected to the size of the compressed index being written.
That step could also be parallelized with only a moderate amount
of effort, further reducing the elapsed time requirement. In total,
our current implementation builds a binned quantized index for
ANCE-MSMARCO in around 10 minutes of elapsed time, with that
time dominated by the single-threaded encoder.

This cost can be compared with the effort required to compute
the PQ point present in the right-hand pane of Figure 8, which
required 10 minutes on 32 threads, and approximately eight times
the total amount of CPU work as our proposed approach.

5 CONCLUSION

We have described a representation for dense indexes that makes
use of quantized index coefficients and arithmetic coding of integer
bin numbers. Our goal was to discover new trade-off options for



Table 4: Detailed results for the same experiment as is depicted in Figure 8, except that fidelity is now measured using RBO with ¢ = 0.95,

reflecting overlap to an average depth of 20 in each answer ranking.

Type B M Contriever-ArguAna DPR-Wikipedia ANCE-MSMARCO
Ratio Psg Pys Ratio  Ps Pys Ratio Ps Pys
float32 8 23 0.915 1.000 1.000 0.919 1.000 1.000 0.917 1.000 1.000
float16 5 10 0.432 1.000 0.999 0.434 1.000 0.997 0.390 0.993 0.976
bfloat28 8 19 0.713 1.000 1.000 0.715 1.000 1.000 0.671 1.000 1.000
bfloat24 8 15 0.588 1.000 1.000 0.589 1.000 1.000 0.546 1.000 0.998
bfloat20 8 11 0.463 1.000 1.000 0.465 1.000 0.998 0.421 0.997 0.985
bfloat16 8 7 0.338 0.999 0.996 0.340 0.996 0.985 0.296 0.939 0.875
bfloat12 8 3 0.213 0.985 0.965 0.215 0.929 0.864 0.171 0.368 0.159
PQ-Best - - 0.549 0.994 0.981 0.253 0.981 0.946 0.188 0.924 0.856
FD40%6 - - 0.376 0.991 0.971 0.375 0.974 0.848 0.375 0.929 0.835
FD1024 - - 0.313 0.970 0.932 0.313 0.933 0.761 0.313 0.798 0.616
FD256 - - 0.250 0.944 0.889 0.250 0.853 0.658 0.250 0.552 0.285
FR4096 - - 0.319 1.000 0.998 0.308 0.999 0.994 0.351 0.989 0.968
FR1024 - - 0.256 0.999 0.995 0.246 0.994 0.983 0.289 0.956 0.906
FR256 - - 0.193 0.995 0.984 0.183 0.977 0.948 0.226 0.842 0.701
GD4096 - - 0.319 1.000 0.998 0.295 0.999 0.993 0.292 0.970 0.931
GD1024 - - 0.249 0.999 0.994 0.228 0.992 0.977 0.226 0.881 0.768
GD256 - - 0.180 0.993 0.980 0.162 0.964 0.928 0.160 0.576 0.329
CFR4096 - - 0.366 1.000 0.998 0.366 0.999 0.989 0.366 0.990 0.970
CFR1024 - - 0.304 0.998 0.992 0.304 0.990 0.974 0.304 0.920 0.840
CFR256 - - 0.242 0.991 0.976 0.242 0.960 0.921 0.242 0.721 0.505

long-term storage of dense indexes, noting that even when stored
in “full” as float32 values, there is approximation involved in the
numeric representation, and in the underlying dot-product compu-
tations used for ranking documents. In experiments on three differ-
ent dense indexes we demonstrated that three of the quantization
methods we described offer an unequaled balance between stored
index size and retrieval fidelity. The fourth quantization method is
less interesting, and we have provided analysis that explains why.

The new methods offer a more fine-grained spectrum of trade-
offs than do previous options based on truncated floating point
representations; and are easier to compute than the product quan-
tization method that allowed a small number of better trade-off
options on one of the three test indexes. We are also aware that
there has been other very recent work in this space [1], and devel-
oping an understanding of the relative merits of those techniques
will be an important next step.

In future work we will explore compressed multi-representation
dense indexes that store a c-dimensional embedding for each term
in each document - such as the ColBERT family [10, 17] - for long-
term retention. We will also explore methods for jointly coding
sequences of versioned indexes to obtain further space savings, and
consider multi-stage compression mechanisms, with the goal of
allowing broad-to-fine hierarchical dense index representations.
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