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Abstract
It is tempting to assume that because effectiveness metrics have free choice to assign scores to search
engine result pages (SERPs) there must thus be a similar degree of freedom as to the relative order
that SERP pairs can be put into. In fact that second freedom is, to a considerable degree, illusory.
That’s because if one SERP in a pair has been given a certain score by a metric, fundamental
ordering constraints in many cases then dictate that the score for the second SERP must be either
not less than, or not greater than, the score assigned to the first SERP. We refer to these fixed
relationships as innate pairwise SERP orderings. Our first goal in this work is to describe and
defend those pairwise SERP relationship constraints, and tabulate their relative occurrence via both
exhaustive and empirical experimentation.

We then consider how to employ such innate pairwise relationships in IR experiments, leading
to a proposal for a new measurement paradigm. Specifically, we argue that tables of results in
which many different metrics are listed for champion versus challenger system comparisons should
be avoided; and that instead a single metric be argued for in principled terms, with any relationships
identified by that metric then reinforced via an assessment of the innate relationship as to whether
other metrics are likely to yield the same system-vs-system outcome.

Keywords and phrases information retrieval evaluation, search effectiveness, search engine results
page
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1 Introduction

Information retrieval mechanisms are often compared using offline evaluation techniques, also
sometimes known as batch evaluation. In such a comparison a corpus of suitable documents
is acquired, a set of representative information needs (topics) and corresponding queries (one
or more per topic) is developed, and relevance judgments connecting the information needs
and the topics are solicited. A comparison of two IR systems – perhaps as a champion versus
challenger experiment – can then be carried out by executing the set of queries using each
of the two systems, to generate pairs of search engine result pages (or SERPs), and then
comparing the quality of those pages, with quality assessed via the usefulness of that SERP
in terms of addressing the corresponding topic’s information need. This work-flow relies
on the use of one or more effectiveness metrics, each of which is a categorical-to-numeric
mapping that takes a SERP and the relevance judgments for that topic as inputs, and returns
a real-valued score. Those numeric scores are regarded as being surrogates that quantify
the SERP’s usefulness to the hypothetical user, or to a conjectured community of similar
users. The systems are then compared based on their paired SERP scores, with one such
comparison being performed for each of the selected metrics. Sanderson (2010) describes
this process in more detail.

A large number of effectiveness metrics have been proposed in the literature, with more
added each year. As one simple example, reciprocal rank (RR) scores binary-valued SERPs
according to the inverse of the rank of their first relevant document, assuming that document
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relevance is a binary indicator. Result pages that have a relevant document in the first
position of the SERP are assigned a score of 1.0; SERPs with the first relevant document at
rank two get a score of 0.5; and SERPs that lack even a single relevant document (down to
some depth k) are assigned a score of zero.

Each such proposal for a metric is (or at least, should be) motivated by a corresponding
user model that is argued as representing the behavior of the community of users of the search
system in question, and hence reflecting the way in those users acquire usefulness (Moffat
et al., 2017). Those models usually assume that the user peruses the elements in the SERP
from the top down, in the same order as they are presented. In this framework RR models
the behavior of users who seek a single relevant document, and who assess the usefulness of
each SERP through the “reward to effort” ratio, with effort captured by the number of SERP
elements considered, be they snippets/captions, or whole documents. Moffat et al. (2017,
2022) discuss user models and they way that they are connected to effectiveness metrics.

System-vs-system comparisons – as appear in many IR papers, including in this journal
– then typically present results for multiple effectiveness metrics, thereby “covering the
field” and “hedging their bets”. While including multiple metrics in a system comparison is
certainly one way of adding generality, such approaches will always be vulnerable to criticism
in connection with the exact choice of metrics used. If the community of users being discussed
is believed to engage in patient or deep retrieval tasks and the primary measurement device is
thus a deep metric, should the second “validation” metric be another deep metric? Or should
the next metric employed be a shallow one, to provide a more illustrative complementary
evaluation?

Our work here brings a new perspective to this typical experimental pipeline. Instead of
seeking significance across each of a palette of specific metrics, we propose that researchers
employ a single metric, namely the one that best suits the task and community of users that
they wish to serve. That is, we argue that a single appropriate metric be reported, matching
the user model that best fits that community’s anticipated aggregate search behavior. Then,
rather than adding further hedging metrics to their evaluations, we propose that researchers
employ innate SERP versus SERP relationships to support their claims in regard to generality.
We define exactly what is meant by that shortly; for now, we summarize the idea as being a
relationship between two SERPs that can in some cases result in their relative score orderings
being known for any and every effectiveness metric when evaluated to some given depth
limit of k.

That is, as a system-vs-system corroboration tool, we seek out pairwise SERP relativities
that must be valid for all reasonable metrics. Such pairings are, for typical values of k,
surprisingly frequent; and when they arise consistently across a set of topics they provide
an indication that the relative system orderings observed using the metric of choice would
also be likely to be detected by other metrics. This “universal hedge” role then allows the
primary metric to be chosen on a principled basis to suit the community of users that is
being modeled, without multiple other metrics being required as part of the presentation.
Given that context, the path through this paper considers the following research questions:

RQ1 Are there fundamental relationships between SERPs that can allow the ordering of
the effectiveness scores of two SERPs to be known independently of the actual effectiveness
metric used?

RQ2 Do such relationships, if they exist, occur sufficiently frequently as to be informative?

RQ3 To what extent do any derived innate relationships agree with system-vs-system
evaluations carried out in the traditional way?
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RQ4 Can those innate relationships, if they exist, be used in a way that adds validity to the
measured outcome of an experiment?

The next section summarizes the principles that underly IR effectiveness metrics, and
introduces the required ideas for our proposed approach.

2 Innate Pairwise SERP Orderings

We now consider ways in which SERP pairs can be regarded as being innately ordered by
virtue of fundamental relationships (RQ1). We starts with definitions, then introduce two
ordering rules and argue that they are universal to SERP-based IR evaluations.

Definitions

A SERP can be thought of as being an ordered k-vector, r = [ri | 1 ≤ i ≤ k], where ri is
the relevance grade associated with the SERP’s i th item. The ri values can be arbitrary
(graded relevance), but are often binary, ri ∈ {0, 1}, the case assumed here. A SERP is thus
a relevance-mapped k-prefix of a complete ordering of the n documents in the IR system.
We assume that SERPs can range from being all-0 to all-1, and in the first instance focus on
some single topic.

In terms of measurement, the ri values arise on either an ordinal scale (relevance grades)
or a ratio scale (relevance gains). But the SERPs themselves are categorical data, since
there is no ordering that can be applied to every possible pair of SERPs. For example, it is
completely unclear whether the SERP [1,0,0] should be better than or worse than [0,1,1]
in terms of its benefit to a user searching for information. Users might prefer either.

Nevertheless, some SERP relativities can be inferred from the fact that the relevance
values ri are (at a minimum) on an ordinal scale. For example, the SERP [1,1,0] cannot
be inferior to the item SERP [1,0,0], because the latter has no rank positions at which it
exceeds the former. Similarly, provided that SERPs are assumed to be consumed from left-
to-right (as shown here, corresponding to top to bottom consumption on a screen or results
page in the more usual presentation), the SERP [1,1,0] cannot be inferior to [1,0,1],
because the former has the same total relevance, and that relevance occurs at earlier rank
positions.

Fundamental Ordering Rules

The example SERP pairings discussed in the previous paragraph are instances of two
well-known relationships that allow a partial ordering of SERPs to be derived, with the
presentation and terminology used here taken from Moffat (2022):

Rule 1 : SERP S1 is non-inferior to SERP S2, written S1 ⪰ S2, if every element of S1
is greater than or equal to the corresponding element of S2 in terms of their ordinal
document relevance labels;
Rule 2 : SERP S1 is also non-inferior to SERP S2 if S2 can be formed as a transformation
of S1 in which one or more of S1’s elements are swapped rightwards and exchanged with
elements of strictly lower document relevance that move leftward.

Rule 1 is an absolute relationship that does not rely on the documents in the SERP being
examined in a top-down manner. It ensures that any direct SERP-to-SERP relationships
that are a result of weakening one or more of the individual relevance values are reflected as
whole-of-SERP relationships, for example, [1,1,0] ⪰ [1,0,0].
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[1,1,1]

[1,1,0] [1,0,1] [0,1,1]

[1,0,0] [0,1,0] [0,0,1]

[0,0,0]

Rule 1
Rule 2

Figure 1 Hasse diagram illustrating the innate non-inferiority relationships amongst
SERPs of length k = 3.

Rule 2 then captures the SERP-to-SERP relationships that can be added if it is assumed
that the SERP is examined sequentially from top-to-bottom (here, left-to-right). It is this
rule that asserts S1 = [1,1,0] ⪰ [1,0,1] = S2, because the second 1 in S1 has swapped
rightward, and a relevance value of lower grade has moved leftward, in order to form S2. Of
course, when relevance is binary there are only two grades available, 0 and 1.

One important point to note is that while both of these rules imply that if S1 ⪰ S2 then S2
precedes S1 when the two SERPs are considered to be vectors and compared lexicographically,
the converse is not true, because lexicographic sorting results in a total order. Note also
that the two rules describe non-inferiority, ⪰, and not superiority, ≻. For example, it might
be tempting to claim that [1,1,0] ≻ [1,0,0] and is strictly superior. But we do not wish
to require that any given user inspects all k documents (indeed, the metric RR provides an
immediate counter-example), and hence the best that can be said is that [1,1,0] ⪰ [1,0,0].

If S1 is non-inferior to S2, then S2 is non-superior to S1, written S2 ⪯ S1. Two further
options then arise:

Equality: If two k-SERPs S1 and S2 are such that S1 is non-inferior to S2 (S1 ⪰ S2) and
S2 is non-inferior to S1 (S2 ⪰ S1) then they are equal, denoted as S1 = S2.
Non-Separability: If two k-SERPs S1 and S2 are such that S1 is not non-inferior to S2
(that is, S1 ̸⪰ S2), and S2 is also not non-inferior to S1 (that is, S2 ̸⪰ S1), then they
cannot be assigned a relativity within the innate requirements of Rule 1 and Rule 2, and
are denoted as being non-separable.

Any pair of k-SERPs S1 and S2 can thus be categorized as being equal, non-separable, or
separable, with that third category covering the cases when S1 ̸= S2 and either S1 ⪰ S2 or
S1 ⪯ S2.

Exhaustive Enumeration

Figure 1 summarizes all pairwise relationships amongst the 2k = 8 SERPs of length k = 3.
Each arrow indicates a ⪰ relationship between the two indicated SERPs; and arrows are
omitted in cases where they can be inferred via transitivity, with directed paths having
the usual interpretation. There is no directed path between the two highlighted elements
[1,0,0] and [0,1,1] and hence no non-inferiority relationship that connects them. As was
noted earlier, that SERP pair is non-separable.
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         0 0 0 0 1 1 1 1
         0 0 1 1 0 0 1 1
         0 1 0 1 0 1 0 1
       +-----------------
 0 0 0 | ==nsnsnsnsnsnsns
 0 0 1 | ni==nsnsnsnsnsns
 0 1 0 | nini==nsnsnsnsns
 0 1 1 | ninini==**nsnsns
 1 0 0 | ninini**==nsnsns
 1 0 1 | ninininini==nsns
 1 1 0 | nininininini==ns
 1 1 1 | ninininininini==

Figure 2 All SERP pairs of length k = 3, and the relationships between them. Red cells
indicate non-separability.

Table 1 The three possible effectiveness metric score relationships for the single non-
separable SERP pair that arises when k = 3.

Ordering Metrics M(·) with that ordering

M([1,0,0]) < M([0,1,1]) Prec@3, RBP(0.8)@3, AP@3, NDCG@3
M([1,0,0]) = M([0,1,1]) Succ@3, RBP((

√
5 − 1)/2)@3

M([1,0,0]) > M([0,1,1]) RR@3, RBP(0.5)@3

Figure 2 shows the same universe of eight k = 3 SERPs using a different presentation. In
each cell the SERP common to that row (with SERP bits read left-to-right, and r1 first) is
compared to the SERP common to the corresponding column (with SERP bits top-to-bottom,
and r1 at the top). The cells are color-coded: dark blue for SERPs that are equal (denoted
==); yellow for non-inferior relationships (⪰, denoted ni); light blue for non-superior (⪯,
denoted ns); and red for non-separable (marked in the figure using **). This grid thus
captures all 64 relationships possible in Figure 1, and makes clear that there is only a single
pair of k = 3 SERPs that are non-separable, the pair highlighted in Figure 1.

Freedom!

We reiterate that while the score relativities shown in Figure 2 are innate and that there is
thus little scope for divergence from the defined pairwise orderings, there are, nevertheless,
many possible effectiveness metrics, even when k = 3. That is because there is an infinity
of score values that can be assigned that are compliant with the required pairwise SERP
ordering constraints. For example, Prec@3 assigns a different effectiveness score to each
row of SERPs in Figure 1, has four different values possible (0, 1/3, 2/3, and 1), and gives
[1,0,1] and [0,1,1] the same score; whereas RR@3 also assigns four values across the eight
SERPs, but they are different ones (0, 1/3, 1/2, and 1), and RR@3 gives those same two
SERPs different scores. Similarly, RBP(0.5)@3 (rank-biased precision, see Moffat and Zobel
(2008) for a description) maps k = 3 SERPs to a total of eight different scores, with each of
the 2k possible SERPs receiving a different metric score. Nevertheless, two SERPs related
by ⪰ must have metric scores that numerically also comply; and they must comply in every
plausible metric.
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It is only for non-separable pairs that the metric has ordering freedom. Table 1 provides
examples of the three ordering relationships possible when considering the single k = 3 non-
separable pair shown in Figures 1 and 2. The metric Succ@k is 1 if there is a relevant document
anywhere in the top k, and 0 otherwise; AP is average precision (Buckley and Voorhees, 2005);
and NDCG is normalized discounted cumulative gain (Järvelin and Kekäläinen, 2002). Note
that in the case of parameterized metrics like RBP the number of different scores produced
and the numeric orderings attached to non-separable pairs can be affected by the metric
parameter. In particular, the use of the golden ratio ϕ = (

√
5− 1)/2 ≈ 0.62 in the middle

row of Table 1 gives equality for the non-separable SERP pair and thus allows RBP to yield
all three possible arrangements of the two SERPs making up that non-separable pair.

Other Score Orderings

The choice of row and column ordering in Figure 2 is arbitrary (after all, SERPs are categorical
data), and the visualization remains valid if the rows are permuted, or the columns are
permuted, or both. There will always be eight blue cells, two red cells, and so on. That
is, while Figure 2 employs a row and column ordering based upon lexicographic SERP
representations as multi-dimensional vectors, other orderings could also be applied. As it
turns out, a lexicographic ordering corresponds to the SERP score ordering induced by
RBP(0.5). That is, Figure 2 can also be viewed as indicating the locations in the RBP(0.5)
score spectrum at which the non-separabilities arise when RBP(0.5) is compared against
other metrics. The blue cells form a perfect diagonal because the row and column orderings
are identical.

Figure 3 shows what happens when SERPs of length k = 6 are categorized in the same
manner.1 Pane (a) directly corresponds to Figure 2, and orders the SERPs on both axes
lexicographically, that is, by their RBP(0.5) scores. Within pane (a) Figure 2 repeats eight
times down the diagonal; the corresponding k = 4 pattern appears four times; and the k = 5
pattern arises twice. There are several other symmetries and motifs that recur in a fractal
manner.

In Figure 3(b), the rows are still ordered by RBP(0.5), but the columns are permuted into
increasing NDCG score order (Järvelin and Kekäläinen, 2002). Exactly the same number of
each color cell is present, but they are now in a different arrangement. In pane (c) the rows
are ordered by AP (Buckley and Voorhees, 2005) and the columns are ordered by RBP(0.5),
yielding a third presentation of the same underlying data; and then pane (d) completes
the set, with the rows ordered by AP and the columns ordered by NDCG. Across the four
panes the three sets of 64 blue cells have Kendall’s correlations, in the context of the four
corresponding axis orderings, of τ = 1.000, τ = 0.796, τ = 0.786, and τ = 0.976 respectively.
Not unexpectedly, AP is more closely correlated with NDCG than is RBP(0.5), even when k

is just six.

Computing SERP Pair Categorizations

Algorithm 1 describes the comparison process used to compare pairs of SERPs and thus
allow the creation of Figures 2 and 3. A linear scan tracking the cumulative sum of their

1 We acknowledge that the axis labels are not readable at A4-print scale, and require “zoom in” on the
soft-copy to be viewed. However our purpose here is to show the overall patterns that emerge, and not
for individual SERP pairs to be identifiable via their labels. The reader is invited to think of this figure
as being “art”, not “science”.
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               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
               0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
               0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
               0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
               0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
             +---------------------------------------------------------------------------------------------------------------------------------
 0 0 0 0 0 0 | ==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 0 1 | ni==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 1 0 | nini==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 1 1 | ninini==**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 0 0 | ninini**==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 0 1 | ninininini==nsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 1 0 | nininininini==ns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 1 1 | ninininininini==******ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns******ns**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 0 0 | ninini**ni******==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 0 1 | nininininini****ni==nsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 1 0 | ninininininini**nini==nsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 1 1 | ninininininininininini==**nsnsns******ns**nsnsns**nsnsnsnsnsnsns******ns**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 0 0 | ninininininini**ninini**==nsnsns********nsnsnsnsnsnsnsnsnsnsnsns********nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 0 1 | ninininininininininininini==nsns**********nsnsns**nsnsnsnsnsnsns**********nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 1 0 | nininininininininininininini==ns************nsns****nsnsnsnsnsns************nsns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 1 1 | ninininininininininininininini==**************ns******ns**nsnsns**************ns******ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
 0 1 0 0 0 0 | ninini**ni******ni**************==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 0 1 | nininininini****nini************ni==nsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 1 0 | ninininininini**ninini**********nini==nsnsnsnsnsnsnsnsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 1 1 | nininininininininininini********ninini==**nsnsns**nsnsnsnsnsnsns******ns**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 0 0 | ninininininini**ninini**ni******ninini**==nsnsnsnsnsnsnsnsnsnsns********nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 0 1 | nininininininininininininini****ninininini==nsns**nsnsnsnsnsnsns**********nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 1 0 | ninininininininininininininini**nininininini==ns****nsnsnsnsnsns************nsns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 1 1 | ninininininininininininininininininininininini==******ns**nsnsns**************ns******ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
 0 1 1 0 0 0 | ninininininini**ninini**ni******ninini**ni******==nsnsnsnsnsnsns****************nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 0 1 | nininininininininininininini****nininininini****ni==nsnsnsnsnsns******************nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 1 0 | ninininininininininininininini**ninininininini**nini==nsnsnsnsns********************nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 1 1 | ninininininininininininininininininininininininininini==**nsnsns**********************ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
 0 1 1 1 0 0 | ninininininininininininininini**ninininininini**ninini**==nsnsns************************nsnsnsns********nsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 1 0 1 | ninininininininininininininininininininininininininininini==nsns**************************nsnsns**********nsnsns**nsnsnsnsnsnsns
 0 1 1 1 1 0 | nininininininininininininininininininininininininininininini==ns****************************nsns************nsns****nsnsnsnsnsns
 0 1 1 1 1 1 | ninininininininininininininininininininininininininininininini==******************************ns**************ns******ns**nsnsns
 1 0 0 0 0 0 | ninini**ni******ni**************ni******************************==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 0 1 | nininininini****nini************nini****************************ni==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 1 0 | ninininininini**ninini**********ninini**************************nini==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 1 1 | nininininininininininini********nininini************************ninini==**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 0 0 | ninininininini**ninini**ni******ninini**ni**********************ninini**==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 0 1 | nininininininininininininini****nininininini********************ninininini==nsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 1 0 | ninininininininininininininini**ninininininini******************nininininini==ns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 1 1 | nininininininininininininininininininininininini****************ninininininini==******ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
 1 0 1 0 0 0 | ninininininini**ninini**ni******ninini**ni******ni**************ninini**ni******==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 0 1 | nininininininininininininini****nininininini****nini************nininininini****ni==nsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 1 0 | ninininininininininininininini**ninininininini**ninini**********ninininininini**nini==nsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 1 1 | nininininininininininininininininininininininininininini********ninininininininininini==**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
 1 0 1 1 0 0 | ninininininininininininininini**ninininininini**ninini**ni******ninininininini**ninini**==nsnsns********nsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 1 0 1 | nininininininininininininininininininininininininininininini****ninininininininininininini==nsns**********nsnsns**nsnsnsnsnsnsns
 1 0 1 1 1 0 | ninininininininininininininininininininininininininininininini**nininininininininininininini==ns************nsns****nsnsnsnsnsns
 1 0 1 1 1 1 | ninininininininininininininininininininininininininininininininininininininininininininininini==**************ns******ns**nsnsns
 1 1 0 0 0 0 | ninininininini**ninini**ni******ninini**ni******ni**************ninini**ni******ni**************==nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 1 0 0 0 1 | nininininininininininininini****nininininini****nini************nininininini****nini************ni==nsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 1 0 0 1 0 | ninininininininininininininini**ninininininini**ninini**********ninininininini**ninini**********nini==nsnsnsnsnsnsnsnsnsnsnsnsns
 1 1 0 0 1 1 | nininininininininininininininininininininininininininini********nininininininininininini********ninini==**nsnsns**nsnsnsnsnsnsns
 1 1 0 1 0 0 | ninininininininininininininini**ninininininini**ninini**ni******ninininininini**ninini**ni******ninini**==nsnsnsnsnsnsnsnsnsnsns
 1 1 0 1 0 1 | nininininininininininininininininininininininininininininini****nininininininininininininini****ninininini==nsns**nsnsnsnsnsnsns
 1 1 0 1 1 0 | ninininininininininininininininininininininininininininininini**ninininininininininininininini**nininininini==ns****nsnsnsnsnsns
 1 1 0 1 1 1 | ninininininininininininininininininininininininininininininininininininininininininininininininininininininini==******ns**nsnsns
 1 1 1 0 0 0 | ninininininininininininininini**ninininininini**ninini**ni******ninininininini**ninini**ni******ninini**ni******==nsnsnsnsnsnsns
 1 1 1 0 0 1 | nininininininininininininininininininininininininininininini****nininininininininininininini****nininininini****ni==nsnsnsnsnsns
 1 1 1 0 1 0 | ninininininininininininininininininininininininininininininini**ninininininininininininininini**ninininininini**nini==nsnsnsnsns
 1 1 1 0 1 1 | ninininininininininininininininininininininininininininininininininininininininininininininininininininininininininini==**nsnsns
 1 1 1 1 0 0 | ninininininininininininininininininininininininininininininini**ninininininininininininininini**ninininininini**ninini**==nsnsns
 1 1 1 1 0 1 | ninininininininininininininininininininininininininininininininininininininininininininininininininininininininininininini==nsns
 1 1 1 1 1 0 | nininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininini==ns
 1 1 1 1 1 1 | ninininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininini==

               0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
               0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1
               0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1
               0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1
               0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1
               0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1
             +---------------------------------------------------------------------------------------------------------------------------------
 0 0 0 0 0 0 | ==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 0 1 | ni==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 1 0 | nini==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 1 1 | ninini******==nsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 0 0 | ninini==nsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 0 1 | nininini****ni==nsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 1 0 | nininini****nini==**nsns****nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 1 1 | nininini****ninini****************==nsnsns**ns**ns**nsns**nsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 0 0 | nininini==ns******nsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 0 1 | ninininini**nini**==nsnsns**nsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 1 0 | ninininini**nininini==ns****nsnsns**nsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 1 1 | ninininini**ninininini************ni==nsns**ns**ns**nsns**nsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 0 0 | ninininini**ninininini==******nsns****nsns******nsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 0 1 | ninininini**nininininini**********nini==ns******ns**nsns**nsns**ns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 1 0 | ninininini**nininininini**********ninini==**********ns****nsns**ns****nsns**nsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 1 1 | ninininini**nininininini**********nininini**********************==****ns****ns**ns**ns********nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 0 0 | ninininini==************nsnsnsnsns********nsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 0 1 | nininininininini**ni****==**nsnsns********nsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 1 0 | ninininininininininini**ni**==nsns**********nsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 1 1 | ninininininininininini**ni**ni****nini******==**ns**nsns**nsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 0 0 | ninininininininininininini**ni==ns**************nsnsnsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 0 1 | ninininininininininininini**nini**ninini****ni**==**nsns**nsns******nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 1 0 | ninininininininininininini**nini**nininini**ni**ni**==****nsns********nsns**nsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 1 1 | ninininininininininininini**nini**nininini**ni**ni**ni**********ni****==****ns**ns**ns********nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 0 0 | ninininininininininininini**nini==********************nsnsnsnsns**********nsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 0 1 | ninininininininininininini**nininininini****ni**ni****==**nsns************nsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 1 0 | ninininininininininininini**ninininininini**ni**ni**nini**==ns**************nsnsnsnsns**nsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 1 1 | ninininininininininininini**ninininininini**ni**ni**nini**ni****ni****ni****==**ns**ns**********nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 1 0 0 | ninininininininininininini**ninininininini**ni**ni**nini**ni==******************nsnsns****nsns****nsnsns**nsnsnsnsnsnsnsnsnsnsns
 0 1 1 1 0 1 | ninininininininininininini**ninininininini**ni**ni**nini**nini**ni****ni****ni**==**ns************nsnsns**nsnsnsnsnsnsnsnsnsnsns
 0 1 1 1 1 0 | ninininininininininininini**ninininininini**ni**ni**nini**nini**ni****ni****ni**ni**==**************nsns****ns**nsnsnsnsnsnsnsns
 0 1 1 1 1 1 | ninininininininininininini**ninininininini**ni**ni**nini**nini**ni****ni****ni**ni**ni**************==**************nsnsnsnsnsns
 1 0 0 0 0 0 | nininininini**************==**************ns**ns**ns****ns****ns**nsns**nsns**ns**ns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 0 1 | nininininininini**ni****nini**************==**ns**ns****ns****ns**nsns**nsns**ns**ns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 1 0 | ninininininininininini**ninini************ni**==**ns****ns****ns**nsns**nsns**ns**ns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 1 1 | ninininininininininini**ninini****nini****ninini******************==ns**nsns**ns**ns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 0 0 | nininininininininininininininini**********ni**ni**==****ns****ns****ns**nsns**ns**ns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 0 1 | nininininininininininininininini**ninini**ninininini**************ni==**nsns**ns**ns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 1 0 | nininininininininininininininini**nininininininininini************nini**==****ns**ns****nsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 1 1 | nininininininininininininininini**nininininininininini**********ninininini********************==nsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 0 0 | ninininininininininininininininini********ni**ni**ni****==****ns**********ns**ns**ns**nsnsnsns**nsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 0 1 | nininininininininininininininininininini**ninininini**nini********nini****==**ns**ns**nsnsnsns**nsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 1 0 | nininininininininininininininininininininininininininininini******nini**nini**==**ns****nsnsns**nsns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 1 1 | nininininininininininininininininininininininininininininini****nininininininini**************ni==ns**nsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 1 0 0 | ninininininininininininininininininininininininininininininini****nini**nini**ni**==******nsns****ns**ns**nsnsnsnsnsnsnsnsnsnsns
 1 0 1 1 0 1 | ninininininininininininininininininininininininininininininini**nininininininininini**********nini==**ns**nsnsnsnsnsnsnsnsnsnsns
 1 0 1 1 1 0 | ninininininininininininininininininininininininininininininini**ninininininininininini********ninini**==****ns**nsnsnsnsnsnsnsns
 1 0 1 1 1 1 | ninininininininininininininininininininininininininininininini**ninininininininininini********ninininini************==nsnsnsnsns
 1 1 0 0 0 0 | ninininininininininininininininini********ni**ni**ni****ni****==**********************nsnsnsns**********nsnsnsnsnsns**nsnsnsnsns
 1 1 0 0 0 1 | nininininininininininininininininininini**ninininini**nini****ni**nini****ni**********==nsnsns**********nsnsnsnsnsns**nsnsnsnsns
 1 1 0 0 1 0 | nininininininininininininininininininininininininininininini**ni**nini**nini**ni******ni==nsns**********nsnsnsnsnsns**nsnsnsnsns
 1 1 0 0 1 1 | nininininininininininininininininininininininininininininini**ninininininininini******nini****nini******==nsnsnsnsns**nsnsnsnsns
 1 1 0 1 0 0 | nininininininininininininininininininininininininininininininini**nini**nini**ni**ni**nini==ns************nsnsnsnsns**nsnsnsnsns
 1 1 0 1 0 1 | nininininininininininininininininininininininininininininininininininininininininini**ninini**ninini****ni==nsnsnsns**nsnsnsnsns
 1 1 0 1 1 0 | nininininininininininininininininininininininininininininininininininininininininininininini**ninini**ninini==**nsns**nsnsnsnsns
 1 1 0 1 1 1 | nininininininininininininininininininininininininininininininininininininininininininininini**nininininininini******ni==nsnsnsns
 1 1 1 0 0 0 | nininininininininininininininininininininininininininininininini**nini**nini**ni**ni**ninini==****************nsnsns****nsnsnsns
 1 1 1 0 0 1 | nininininininininininininininininininininininininininininininininininininininininini**ninininininini****nini**==nsns****nsnsnsns
 1 1 1 0 1 0 | nininininininininininininininininininininininininininininininininininininininininininininininininini**ninininini==ns****nsnsnsns
 1 1 1 0 1 1 | ninininininininininininininininininininininininininininininininininininininininininininininininininininininininini**nini==nsnsns
 1 1 1 1 0 0 | nininininininininininininininininininininininininininininininininininininininininininininininininini**nininininini==******nsnsns
 1 1 1 1 0 1 | ninininininininininininininininininininininininininininininininininininininininininininininininininininininininininininini==nsns
 1 1 1 1 1 0 | nininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininini==ns
 1 1 1 1 1 1 | ninininininininininininininininininininininininininininininininininininininininininininininininininininininininininininininini==

(a) RBP(0.5) (lexicographic) on both (b) RBP(0.5) on left, NDCG on top

               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
               0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
               0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
               0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
               0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
               0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
             +---------------------------------------------------------------------------------------------------------------------------------
 0 0 0 0 0 0 | ==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 0 1 | ni==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 1 0 | nini==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 0 0 | ninini**==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 0 0 | ninini**ni******==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 0 0 | ninini**ni******ni**************==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 0 1 1 | ninini==**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 0 1 | ninininini==nsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 1 0 | nininininini==ns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 0 1 | nininininini****ni==nsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 1 0 | ninininininini**nini==nsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 0 0 | ninininininini**ninini**==nsnsns********nsnsnsnsnsnsnsnsnsnsnsns********nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 0 1 | nininininini****nini************ni==nsnsnsnsnsnsnsnsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 1 0 | ninininininini**ninini**********nini==nsnsnsnsnsnsnsnsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 0 0 | ninininininini**ninini**ni******ninini**==nsnsnsnsnsnsnsnsnsnsns********nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 0 0 | ninini**ni******ni**************ni******************************==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 0 1 1 1 | ninininininini==******ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns******ns**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 0 0 | ninininininini**ninini**ni******ninini**ni******==nsnsnsnsnsnsns****************nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 0 1 1 | ninininininininininini==**nsnsns******ns**nsnsns**nsnsnsnsnsnsns******ns**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 0 1 | ninininininininininininini==nsns**********nsnsns**nsnsnsnsnsnsns**********nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 0 1 | nininininini****nini************nini****************************ni==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 0 1 1 | nininininininininininini********ninini==**nsnsns**nsnsnsnsnsnsns******ns**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 1 0 | ninininininini**ninini**********ninini**************************nini==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 1 0 | nininininininininininininini==ns************nsns****nsnsnsnsnsns************nsns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 0 1 | nininininininininininininini****ninininini==nsns**nsnsnsnsnsnsns**********nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 0 0 | ninininininini**ninini**ni******ninini**ni**********************ninini**==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 1 0 | ninininininininininininininini**nininininini==ns****nsnsnsnsnsns************nsns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 0 1 | nininininininininininininini****nininininini****ni==nsnsnsnsnsns******************nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 0 0 | ninininininini**ninini**ni******ninini**ni******ni**************ninini**ni******==nsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 1 0 | ninininininininininininininini**ninininininini**nini==nsnsnsnsns********************nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 0 1 1 | nininininininininininini********nininini************************ninini==**nsnsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 1 0 0 | ninininininininininininininini**ninininininini**ninini**==nsnsns************************nsnsnsns********nsnsnsnsnsnsnsnsnsnsnsns
 1 0 0 1 0 1 | nininininininininininininini****nininininini********************ninininini==nsns**nsnsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 1 0 0 0 0 | ninininininini**ninini**ni******ninini**ni******ni**************ninini**ni******ni**************==nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 0 1 1 1 1 | ninininininininininininininini==**************ns******ns**nsnsns**************ns******ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
 1 0 0 1 1 0 | ninininininininininininininini**ninininininini******************nininininini==ns****nsnsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 0 0 1 | nininininininininininininini****nininininini****nini************nininininini****ni==nsnsnsnsnsns**nsnsnsnsnsnsnsnsnsnsnsnsnsnsns
 0 1 0 1 1 1 | ninininininininininininininininininininininini==******ns**nsnsns**************ns******ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
 1 0 1 0 1 0 | ninininininininininininininini**ninininininini**ninini**********ninininininini**nini==nsnsnsnsns****nsnsnsnsnsnsnsnsnsnsnsnsnsns
 1 0 1 1 0 0 | ninininininininininininininini**ninininininini**ninini**ni******ninininininini**ninini**==nsnsns********nsnsnsnsnsnsnsnsnsnsnsns
 0 1 1 0 1 1 | ninininininininininininininininininininininininininini==**nsnsns**********************ns**nsnsns******ns**nsnsns**nsnsnsnsnsnsns
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Figure 3 All SERP pairs of length k = 6, plotted using the same colors as in Figure 2,
with each grid consisting of 26 × 26 = 4,096 cells. Each pane has exactly the same number
of red cells; they indicate SERP pairs where the two metrics are permitted to disagree on
the relative ordering of the two SERPs, and are not in any way an indication that they do
disagree.

element-by-element differences is sufficient to infer the relationship between any pair of
k-SERPs S1 and S2. In particular, if there is no depth prior to k at which S1 has fewer
one-bits than has S2, then S1 must be either equal to S2, or non-inferior to it. On the other
hand, if S1 has had both strictly fewer one-bits than S2 at some point k′ ≤ k, and also
strictly more one-bits than S2 at some other point k′′ ≤ k, then S1 and S2 are non-separable.

Figure 4 illustrates the application of Algorithm 1. At depths i = 1, i = 2, and i = 3
the number of one-bits remains balanced and they appear in the same positions, and so the
two SERPs are judged to be equal. From depth i = 4 the cumulative difference is positive,
and so the outcome switches to “non-inferior”. Finally, at i = 9 the cumulative sum enters
negative territory, and from that point onward the two SERPs must be regarded as being
non-separable. Hence, any particular metric is free to assign any of the three possible relative
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Algorithm 1 Comparing SERPs to establish their innate ordering relationship. Each of
S1 and S2 is a k-vector of 0s and 1s.

cumul ← 0
2: been_neg ← been_pos ← false

for i← 1 to k do
4: cumul ← cumul + S1[i]

cumul ← cumul − S2[i]
6: if cumul < 0 then

been_neg ← true
8: if cumul > 0 then

been_pos ← true
10: if been_neg and been_pos then

return non-separable
12: else if been_pos then

return non-inferior
14: else if been_neg then

return non-superior
16: else

return equal

1 0 1SERP S1 1 0 0 1 0 0 0

1 0 1 0 0 1 1 0 1 1SERP S2

0 0 0 +1 +1 0 0 0 -1 -2

== == == ni ni ni ni ni ** **

cumulative
difference

outcome

1051

Figure 4 Comparing SERPs to get an innate pairwise ordering. In this example, either
S1 or S2 might be assigned the higher score for metrics computed to depth k = 10, possible
because the two SERPs are non-separable. But at depths k = 4 through to k = 8 SERP S1
cannot be assigned a lower effectiveness score than SERP S2.

orderings (Table 1) to these two 10-SERPs. On the other hand, if only the first k = 5
elements of S1 and S2 are considered, then every metric must assign a score to S1 that is
not lower than the score assigned to S2. This variation with i is typical: at first, any pair
of SERPs are equal (when i = 0); and then, after some number of relevance values have
been considered, one of them gains the upper hand. That advantage either remains until the
target depth k is reached, or until the other SERP in turn claims the majority of one bits. If
the latter occurs at any point the non-separability outcome cannot be subsequently reversed,
and continues to hold as i is further increased. No combination of further bits added in
Figure 4 – positions 11 to 20, for example – could alter the outcome that results once k = 9
is reached. Of course, each metric assigns a score to each of S1 and S2 for each value of k,
and so for any given metric there is a score relativity. Once k ≥ 9 that relativity can be in
either direction.
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Table 2 Fraction of SERP pairs of length k that are equal, separable, and non-separable,
based on enumeration (k ≤ 15) and random generation of a billion SERP pairs (k ≥ 20).

k equal separable non-sep.

5 3.12% 83.98% 12.89%
10 0.10% 67.08% 32.81%
15 0.00% 55.97% 44.02%
20 0.00% 48.91% 51.09%
50 0.00% 31.43% 68.57%
100 0.00% 22.34% 77.66%

We can now answer RQ1 in the affirmative: there are indeed sometimes fundamental
relationships between SERPs that dictate the ordering of “@k” effectiveness scores, inde-
pendently of the actual effectiveness metric used, and irrespective of the effectiveness scores
assigned by that metric. We next explore implications of that in the context of typical IR
batch evaluation scenarios, leading to a new way of presenting IR effectiveness results.

3 A New Perspective – IPSO

We are now in a position to consider RQ2, RQ3, and RQ4. First a test environment is
described, and then using that data we explore the implications of these innate pairwise
SERP orderings. For brevity – and because we think it is a fitting acronym – we reduce
“innate pairwise SERP ordering” to IPSO. We then present our proposal for a new way of
presenting IR system-vs-system experimental results, using IPSO as an additional indicator.

Experimental Setup

We make use of the runs submitted to the 2004 TREC Robust track Voorhees (2004). A
total of 110 systems were represented via runs, with each system responding to a total of
249 queries on documents from TREC Disks 4 and 5, excluding the Congressional Record
from Disk 4. The official evaluation metric was AP, with Prec@10 also reported. The Robust
relevance judgments contain an average of 1250.6 judgments per topic, of which 69.9 had
relevance grades of 1 or greater. Our experiments assume binary judgments, with any
documents judged ≥ 1 taken to be relevant, and all unjudged documents assumed to be
non-relevant.

Exhaustive Enumeration

RQ2 asks how frequently SERP pairs can be expected to display the innate ordering
characteristics captured by the ⪰ relationship. We explore that in two ways – first via
exhaustive enumeration of SERP pairs, and then by considering the SERP pairs that arise
in a typical IR experimental setting.

Table 2 categorizes the SERP pairs as k increases, combining non-inferior and non-superior
into a single separable grouping, as was described above. To form the table the values for
k ≤ 15 were computed exactly, via exhaustive counting over all possible 22k SERP-pair
combinations using binary (0 or 1) relevance judgments. The three values for k ≥ 20 are
estimates, based on assessment of 109 randomly-generated SERP pairs of each length, where
random means that 0s and 1s are equally likely at each rank from 1 through to k in each of
the SERPs.
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Table 3 Fraction of SERP pairs of length k that are equal, separable, and non-separable,
based on all SERP-vs-SERP comparisons in the TREC Robust Track data across 249 topics
and 5,995 system pairs.

k equal separable non-sep.

5 20.40% 74.49% 5.12%
10 8.33% 74.66% 17.01%
15 4.91% 69.91% 25.18%
20 3.55% 66.01% 30.44%
50 1.54% 55.88% 42.58%
100 0.92% 50.44% 48.64%

The table indicates that a useful fraction of all possible SERP pairs can be innately
ordered for moderate evaluation depths. For example, when k = 10, fully two-thirds of all
SERP pairs have a fixed relationship, and only one-third of SERP pair relativities are at
the discretion of the individual metric. At k = 20 that fraction is still around half; and
even at k = 50 around one third of all SERP-pair relativities can still be regarded as being
metric-independent, and determined by application of the Rule 1 and Rule 2 that were
introduced earlier.

Separability In Practice
Table 3 shows what happens when actual SERPs are considered. To build the table, all
110 systems submitted to the Robust track were compared to each other, over all 249 of
the track topics, with all runs truncated at 100 documents each. The results aggregate the
249× 110× 109/2 = 1,492,755 resulting SERP-vs-SERP relationships. Compared to Table 2,
a greater fraction of SERP pairs are identical, and a greater fraction of the SERP pairs
are separable. The lower-than-expected non-separability levels suggest that these actual
SERPs are not equivalent to being random. Non-randomness arises in two quite different
ways. At low values of k the proportion of 1s and 0s is approximately equal (for example, at
k = 5 there are 50.5% non-relevant and 49.5% relevant on average across the runs), but the
placement of those outcomes within the SERPs tends to be correlated, as evidenced by the
high number of “equal” outcomes in the first row in Table 3. The second effect is that as k

becomes larger there are far more non-relevant documents than relevant (for example, when
k = 50 the mix is 74.4% 0s and 25.6% 1s), caused in part by the systems seeking to bring
relevant documents to the beginning of their runs, and then amplified by our application of
the standard IR assumption that unjudged documents are not relevant.

To quantify the extent to which unjudged documents might be a confound, we explored
the relevance judgments. Across the set of 110 × 259 = 27,390 system-query runs, 18,817
(68.7%) contained one or more unjudged documents, with the average position of the first
unjudged document across those 18,817 runs being rank 46.0. Within that set of 18,817 runs
there were on average 14.6 unjudged documents per 100-item run. These numbers suggest
that any measurements on the Robust runs that are taken at k = 100 should be viewed
with care, but that k ≤ 20 measurements can be considered to be reasonably reliable. The
appropriateness of using incomplete relevance judgments has been an ongoing theme of IR
research for more than two decades, and we note that issue here without seeking to resolve it.

Regardless of the reasons, the fact that there are relatively high separability levels in
common system-vs-system experimental settings at typical evaluation depths is an important
outcome, and answers RQ2: a substantial fraction of paired SERP comparisons can indeed
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  Topic    SysA         SysB            Relationship            RR    Prec   RBP.5  RBP.8   AP    NDCG   

   302     1011101101 v 1100111111      ==nsns**************    0.00  -0.10  -0.08  -0.03  -0.09  -0.08 
   317     1111101101 v 1111111000      ==========nsnsnsns**    0.00   0.10  -0.01   0.00   0.05   0.05 

   301     1011111101 v 1111111110      ==nsnsnsnsnsnsnsnsns    0.00  -0.10  -0.25  -0.17  -0.24  -0.14 
   306     1100000101 v 1110110100      ====nsnsnsnsnsnsnsns    0.00  -0.20  -0.17  -0.25  -0.26  -0.21 
   315     0000100000 v 0001000000      ======nsnsnsnsnsnsns   -0.05   0.00  -0.03  -0.02  -0.01  -0.01 
   323     1111101010 v 1111101110      ==============nsnsns    0.00  -0.10  -0.00  -0.04  -0.10  -0.07 

   309     0000000000 v 0000000000      ====================    0.00   0.00   0.00   0.00   0.00   0.00 
   313     1111111111 v 1111111111      ====================    0.00   0.00   0.00   0.00   0.00   0.00 
   320     0000000000 v 0000000000      ====================    0.00   0.00   0.00   0.00   0.00   0.00 
   321     1111111111 v 1111111111      ====================    0.00   0.00   0.00   0.00   0.00   0.00 
   322     0000000000 v 0000000000      ====================    0.00   0.00   0.00   0.00   0.00   0.00 

   303     1000010000 v 1000000010      ==========ninininini    0.00   0.00   0.01   0.03   0.01   0.01 
   316     1111110111 v 1111001111      ========nininininini    0.00   0.10   0.04   0.10   0.16   0.09 
   324     1111111111 v 1111011110      ========nininininini    0.00   0.20   0.03   0.11   0.25   0.15 
   312     1111101111 v 1110011111      ======ninininininini    0.00   0.10   0.08   0.12   0.18   0.10 
   305     0010000000 v 0000000000      ====nininininininini    0.33   0.10   0.12   0.13   0.03   0.11 
   307     0110110100 v 0001111010      ==ninininininininini    0.25   0.00   0.31   0.14   0.08   0.08 
   308     1100010000 v 1010000000      ==ninininininininini    0.00   0.10   0.14   0.10   0.08   0.11 
   311     1110111110 v 1001001010      ==ninininininininini    0.00   0.40   0.36   0.37   0.49   0.39 
   319     0111110011 v 0000000000      ==ninininininininini    0.50   0.70   0.49   0.60   0.49   0.64 
   304     1001000000 v 0000100000      nininininininininini    0.80   0.10   0.53   0.22   0.13   0.23 
   310     1011010000 v 0010010000      nininininininininini    0.67   0.20   0.56   0.30   0.24   0.31 
   314     1000001000 v 0000000000      nininininininininini    1.00   0.20   0.51   0.25   0.13   0.29 
   318     1011000010 v 0000000000      nininininininininini    1.00   0.40   0.69   0.46   0.29   0.49 

   325     0010001000 v 0001010000      ====ninini**********    0.08   0.00   0.05   0.01   0.00   0.01 

    RR@10: vals = 25  neg =  1  pos =  8  avg = 0.18  signtest-p = 0.039
  Prec@10: vals = 25  neg =  4  pos = 12  avg = 0.09  signtest-p = 0.077
 RBP.5@10: vals = 25  neg =  6  pos = 14  avg = 0.14  signtest-p = 0.115
 RBP.8@10: vals = 25  neg =  5  pos = 15  avg = 0.10  signtest-p = 0.041
    AP@10: vals = 25  neg =  5  pos = 15  avg = 0.08  signtest-p = 0.041
  NDCG@10: vals = 25  neg =  5  pos = 15  avg = 0.10  signtest-p = 0.041

  ipso@10: vals = 25  neg =  4  pos = 13  avg = 0.36  signtest-p = 0.049

Figure 5 Comparison to depth k = 10 between two Robust runs over Topics 301–325.
In the final six columns dark blue entries indicate equality of metric scores; yellow entries
indicate that System A scores more highly; and light blue values indicate that System B

scores more highly. The values in those cells are the score differences, M(A)−M(B).

be ordered using nothing other than their innate relationship in the partial order that governs
all SERPs. Furthermore, these SERP pairs have been confirmed to occur in practice Jones
et al. (2015).

System Comparisons Over a Set of Topics

The fact that a high fraction of the SERP-vs-SERP pairs that arise in practice have innate
orderings evident at plausible evaluation depths k is very encouraging, and leads us to
consider what happens across sets of topics.

Figure 5 illustrates such a situation, taking a set of 25 topics (301–325) and two of the
Robust runs to depth k = 10, denoted System A and System B. Each row shows a topic
number; the two SERPs being compared, one from System A and one from System B; their
IPSO relationship using the same labels and colors as were used in Figures 2 and 4; and then
the metric score differences between System A and System B for that topic for each of six
different effectiveness metrics. (Note that the metric scores are not shown, only their signed
difference.)

At the same time the rows (topics) are ordered vertically into five sections: the first group
contains all the non-separable topics ** that include an ns midpoint; the second group is all
of the separable topics that lead to an ns outcome; the third group consists of all of the ==
topics; the fourth group shows the separable topics that lead to an ni outcome; and then the
last group shows the single ** topic that has an ni midpoint. Within each of the five groups
the rows are ordered by the number of red ** cells (if any), and then by the extent of the
leading blue == zone. Given this overall ordering the rows can be thought of as “wrapping
around” so that the bottom row is also adjacent to the top; making a cylinder that in fact
contains four distinct sections rather than five.
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Figure 6 The IPSO comparison over all 249 Robust topics to depth k = 10 between the
same two systems shown in Figure 5, using the same formatting and same column headings,
but here split into two pieces that are presented side-by-side. The five sections of the output
contain 20 topics, 81 topics, 23 topics, 109 topics, and 16 topics respectively.

Looking at the metric score differences shown in the final six columns of the figure, the
“≤” requirement when System A and System B are compared is clear in the second group of
topics (starting at Topic 301); and similarly the “≥” requirement is clear in the fourth group
of topics (starting at Topic 303). On the other hand, the top group and bottom group have
no such requirement, and in the top group (starting at Topic 302) all three score difference
possibilities can be seen, as was also noted in connection with Table 1. The one row that
comprises the bottom group is consistent across the six illustrated metrics, but that is just
chance, and light-blue ns overall outcomes could arise if further metrics were added.
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Figure 6 shows the same two Robust systems, but now with all 249 topics included.2
There are again five distinct groups, or four when the top row is considered to be “adjacent”
to the bottom row, wrapped around a cylinder. Moreover, with 81 topics in the second group,
23 topics in the middle group, and 109 topics in the fourth group, it is clear that for the great
majority of topics the IPSO analysis is sufficient to identify the polarity of the paired SERP
score differences. Those mandated relationships are clearly visible for the six metrics at the
right of Figure 6, with columns for RR, Prec@10, RBP(0.5), RBP(0.8), AP, and NDCG, as in
Figure 5. Only 36 of the topics yield k = 10 SERP pairs for which an effectiveness metric is
free to assign scores in either order. In those two sections of Figure 6 both positive (yellow)
and negative (light blue) metric score differences do arise. But in the long second and fourth
sections there is an enforced inequality relationship on the per-topic score differences that
simply cannot be violated.

Statistical Testing

The penultimate step in most system-vs-system experimental comparisons is to carry out a
paired statistical test on the metric score differences, to establish the degree of support for
the null hypothesis that the mean difference is zero. (The ultimate step being, of course, to
crystallize the findings in to a research paper submission). If there is only limited support
for the null hypothesis (with “limited” often at a level of p < 0.05) it is rejected, and the
difference between the two systems is deemed to be “significant”.

The IR community is well-versed in these techniques, and now expects statistical testing,
in one way or another, as a matter of routine (Sakai, 2016a,b; Urbano et al., 2019; Smucker
et al., 2007; Ferro and Sanderson, 2022). The Student t test is probably the most commonly
used option, but the Wilcoxon Signed-Rank test and the simpler Sign test can also be used,
especially if the distribution of paired score differences does not match the requirements for
the parametric Student test (such as when the metric being used is RR).

Application of the IPSO mechanism generates a set of five category counts, but not scores.
Nor are there any score differences. That means it is not possible to compute a p value from
the Student t test or from the Wilcoxon Signed-Rank test. However, it is possible to employ
a Sign test, because it applies to categories rather than to values. As an example, consider
the system-vs-system relationship depicted in Figure 6. If the first and last groups of topics
(of the five groups) are discarded as being inconclusive, and the middle group is discarded
as being uninformative, what remains is a set of 81 ns topics and a set of 109 ni topics. It
is then possible to pose as a null hypothesis that “the number of ns topics is equal to the
number of ni topics”, and compute a p value relative to that hypothesis using the Sign text.
For the two illustrated runs that results in p = 0.0499 as a two-tailed outcome, and we can
conclude that the difference between |ns| = 81 and |ni| = 109 is significant at the 0.05 level.
Note that it is the counts of the ni and ns topic sets that contribute to the test, without
reference to the overall topic set size. That way, if the ni and ns sets are closer to each other
in size, or if the two non-separable groups span the majority of the topics and the ni and ns
sets are small, the power available to the Sign test will also be small, and the calculated p

values will tend to be larger.
The p values computed in this manner must not be extrapolated as applying to the overall

system comparison for other metrics; to do so would be incorrect. This is because in a normal

2 As with Figure 3 we ask that the reader consider the patterns of color, rather than squint to try and
read the details of the SERPS and of their metric score differences.
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Figure 7 Statistical test outcomes for all 110× 109/2 = 5,995 System A versus System B

challenger-vs-champion experiments possible within the 110 submitted Robust runs. In each
case all 249 topics are used, with six effectiveness metrics then employed at each of four
different retrieval depths; three statistical tests (two-tailed in each case); and a significance
threshold of p < 0.05. The two-tailed Sign test is always used to obtain the IPSO p values,
and they refer to the null hypothesis |ns| = |ni|.

score-based statistical test across a full set of topics the queries are taken to be independent
draws from the population of all possible queries. A small p value then supports predictions
that further independent draws from the same underlying population will demonstrate the
same relationship between the two systems. But in the scenario considered here the set of **
topics across which any such extrapolation would need to apply cannot be regarded as being
independent draws, and there is a selection bias. Indeed, they are quite explicitly known
to not have the same characteristics as the ones that led to the ns and ni sets. Moreover,
as a further complexity, note that those two key classes, ns and ni, are “not superior” and
“not inferior”, with both including the possibility of metric score equality. That is, a system
comparison could, conceivably, assign every single topic to the ns set (or, equally, the ni set)
and thereby attain a miniscule IPSO-based Sign test p value, and yet for a particular metric,
still have System A and System B assigned identical scores for every one of those topics.

Taking again the specific example shown in Figure 6, there are |**| = 36 queries for which
each effectiveness metric is free to assign numeric scores in either relative order, and any
IPSO-based claims that are made must of necessity respect that freedom. Hence, depending
on the metric, the final balance of “votes” between System A and System B might be
anywhere between 81 “versus” 109 + 36 (which yields p < 0.01) at one extreme, and 81 + 36
versus 109 (which results in p ≈ 0.25) at the other.

That is, the Sign test p value generated from an IPSO-based analysis and the null
hypothesis |ns| = |ni| may be regarded as being an interesting indicator of overall system
relativities, but must not be taken as a measurement of statistical confidence that makes
promises in regard to all metrics.
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Given this context, Figure 7 explores the relationship between IPSO-derived Sign test p

values (for the null hypothesis |ns| = |ni|) and those generated via a range of metrics (for
the null hypothesis that the two systems have the same performance as assessed by that
metric) in conjunction with three different statistical tests. Each bar in each pane of the
figure takes all possible System A versus System B pairs in the Robust data, and applies one
effectiveness metric to one depth k, and then applies one selected statistical test to the set of
paired score differences, to compute a p value. Each of those (A, B) system pairs in each bar
of each subgraph is then labeled as being one of four possible categories:

“Both: Yes”, indicating that the IPSO Sign test (comparing |ns| and |ni|) and the selected
metric/test pair (comparing System A and System B) agree that there is a significant
difference;
“Both: No”, when the IPSO Sign test and the selected metric/test pair agree that there is
not a significant difference;
“Metric: Yes”, where the metric/test combination reports significance, but IPSO does
not; and, finally
“Metric: No”, where IPSO reports significance, but the metric/test combination between
System A and System B does not.

Of these four possibilities, the combined “Both: Yes” and “Both: No” categories represent
a reassuringly high level of agreement. They are shown in Figure 7 as two shades of green
at the bottom of each of the bars in each of the panes, and cover a minimum (across the
bars and panes) of three quarters of all system pairs, and up to 90% or more of the system
pairs in some metric/test cases. Note also how (with the exception of RR) the fraction of
“Both: Yes” tends to increase with k regardless of metric and statistical test; and how for
any given metric the increased power of the Wilcoxon and then t tests relative to the Sign
test is visible via the growth of the mustard-colored “Metric: Yes” category when moving
down each column of graphs.

The non-green minority of cases represent system pairs for which disagreement occurs.
Figure 8 helps understand the situations in which that happens.3 To form each pane the
110 systems submitted to the Robust track were ordered by average Prec@10 score, and then
the 5,995 individual system-vs-system experiments that were aggregated into the “Prec@10,
k = 10, Student t test” bar in Figure 7 were each represented by a colored dot placed
according to the ranks of the two systems. For example, the dot at bottom left in each pane
represents the “best” versus “second best” system, and the dot at top right is “second worst”
versus “worst”. Dots along the diagonal edge similarly represent systems being compared to
the ones immediately adjacent to them in the system ordering induced by Prec@10.

In each of the four panes in Figure 8 there is a distinctive pattern of dark green (both
Prec@10 and IPSO indicate significance) and light green (neither indicate significance), with
a transition region between of grey and mustard-colored points. Note how increasing the
stringency of the significance threshold (moving from pane (a) to pane (b), and similarly
moving from pane (c) to pane (d)) and reducing the number of topics employed (moving
from pane (a) to pane (c), and similarly moving from pane (b) to pane (d)) both shift the
balance between dark green and light green, but don’t alter the overall pattern. Note also
how the grey “IPSO only” cells tend to spread into (that is, be surrounded by) the light
green zone, whereas the mustard-colored “Prec@10 only” cells tend to spread into the dark
green zone. In Figure 8(a), 67.4% of the plotted dots are dark green and 7.5% are mustard,

3 Voorhees et al. (2017), and perhaps others, make use of a similar triangular presentation.
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Prec:  No,  IPSO: Yes
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Both: Yes

Prec:  No,  IPSO: Yes
Prec:  Yes, IPSO: No
Both: No
Both: Yes

(a) 249 topics, p < 0.05 (b) 249 topics, p < 0.01

Prec:  No,  IPSO: Yes
Prec:  Yes, IPSO: No
Both: No
Both: Yes

Prec:  No,  IPSO: Yes
Prec:  Yes, IPSO: No
Both: No
Both: Yes

(c) 50 topics, p < 0.05 (d) 50 topics, p < 0.01

Figure 8 System-vs-system significance categories, with one “dot” plotted per system pair
using colors that match Figure 7. The ordering of the 110 Robust systems is based on their
average Prec@10 score across the given topic set (all 249 topics in the top two panes, and
topics 301–350 in the bottom two panes), and with system-vs-system significance calculated
from paired Prec@10 scores using the Student t test.

with Prec@10 identifying a total of 74.9% of system pairs as being significantly different
when the Student t test is employed. On the other hand, IPSO and the Sign test achieve a
total of 71.4%. That these rates are different is of no concern. In particular, the statistical
tests are different, and IPSO significance is in one sense a broader outcome than is Prec@10
significance, making it harder to achieve, but at the same time is also a weaker outcome,
since it is based only on the ns and ni counts (with both groups permitting score equality),
rather than on score differences.

The two systems depicted in Figures 5 and 6 are in fact the best Robust run and the 25 th
percentile run according to Prec@10 – which, as a pair, correspond to points 1/4 of the way
up the triangle’s left edge in each pane of Figure 8. Direct metric-based comparisons of these
two runs can also be carried out, of course. For example, Prec@10 yields p = 0.017 using a
two-tailed Student t test, and NDCG gives p = 0.027. On the other hand, AP, RBP(0.5), and
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RBP(0.8) all result in p ≥ 0.05. This kind of variability is inevitable when statistical tests are
employed to gauge significance, and the reassurance, or “hedge” as it was described above, is
provided by noting that all six metrics assess the first run as being better than the second.
Such differences in system performance can exist without a statistical test passing some
selected – but also arbitrary – threshold. The critical point that we seek to make in this work
is that the IPSO-based Sign test has the capacity to encompass all of those metric-specific
outcomes and provide overall guidance as to the likely ordering of the two systems.

The results we have presented thus answer RQ3: IPSO-derived system-vs-system rela-
tionships generally agree with those of conventional effectiveness metrics under commonly
applied statistical tests.

Using IPSO as a Corroboration

We have now arrived at our proposal. As was noted earlier, it is common for researchers
reporting the result of a system-vs-system comparison to tabulate several metrics, and a
statistical test for each, as a way of providing multiple sources of evidence that their new
challenger system does indeed outperform the current champion. We propose instead that the
hedging aspect of multi-metric analysis be supported by an IPSO-based system comparison.

For example, suppose that two systems A (champion) and B (challenger) are being
compared in regard to their suitability for some defined search task. We suggest that the
comparison be carried out as follows:

Select a single evaluation metric M(·) for which the corresponding user model can be
argued as matching the anticipated (or observed) behavior of searchers when carrying
out that task, and the way that particular user population might therefore define and
measure “search success”;
Report mean metric scores M(A) and M(B) and the mean score difference M(B)−M(A)
(the measured effect size);
Then carry out a suitable significance test against the null hypothesis that “the effect
size is zero”;
If that test yields a p value less than some stipulated threshold α (typically α = 0.05),
then “add a †” and claim significance;
Plus, if the metric-based p value is less than α, perform an IPSO-based Sign test against
the null hypothesis that “the number of ns topics and the number of ni topics is the
same”;
And if p < α from that second test as well, add that further claim (by adding a ‡, or
some other preferred symbol) to the reported results, as a corroboration of generality.

That is, we argue in response to RQ4 that one IPSO-based test “in the hand” is worth
multiple other metrics “in the bush” when seeking to add generality to an evaluation that
has, for principled reasons, been based on a chosen user-matched effectiveness metric.

Implications and Limitations

If a single pair of SERPs lead to an IPSO outcome of ni or ns, then the relationship between
the two SERPs in an “at k” comparison is certain and is metric-agnostic. On the other hand,
as has been noted above, if an IPSO-based Sign test over a set of topics yields a significant
outcome, there is still no confidence that the outcome is applicable to all of the tested topics,
nor to all future topics. That lack of confidence is partly a consequence of the nature of
statistical testing – it gives encouragement (based on a representative sample) but never
certainty; and is partly a consequence of the fact that IPSO is an imprecise indicator, with
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the ns and ni classes both admitting score equality, and with the ** class able to swing
either way.

Also worth noting is that – as is also the case for standard metric scores – each SERP
length k is likely to lead to a different computed p value. In the case of most metrics, as
the evaluation depth increases, so too does the likelihood of significance, an effect that was
identified in connection with Figure 7. But in the case of IPSO, the fact that the ni and
ns topic counts in any given set cannot increase as k increases means that the p value will,
other things being equal, also tend to increase. That is, the greater the value of k, the less
likely will be a Sign test p value that is below the threshold. We will undertake further
experimentation to explore this aspect of our proposal.

Graded Relevance

The examples used as illustrations in the previous section all made use of binary relevance
labels; as did the collections and runs used in the experiments presented in this section. But
exactly the same definitions (Rule 1 and Rule 2) can be applied to real-valued (ratio scale)
SERP comparisons, without any adjustments being required. Similarly, Algorithm 1 remains
the correct description of the comparison computation, except that S1 and S2 are now
vectors of floating point values. For example, if relevance is being reported on a four-point
ratio4 scale, ri ∈ {0.0, 0.2, 0.8, 1.0} say, and we have k = 5, then S1 = [1.0, 0.8, 0.0, 0.2, 1.0]
and S2 = [0.8, 0.8, 0.0, 0.2, 0.8] have the relationship S1 ⪰ S2 because of Rule 1; and if
S3 = [1.0, 0.2, 0.0, 0.8, 1.0] then S1 ⪰ S3 because of Rule 2; and S2 and S3 are non-separable.

If the relevance grades are ordinal classes such as “not at all”, “somewhat”, and “highly”,
then a gain mapping that converts ordinal relevance grades to floating point values must be
argued for and applied first, in exactly the way as is needed for all numeric score comparisons
based on graded relevance evaluations. That is, Algorithm 1 may not be applied directly
to relevance grades such as ri ∈ {0, 1, 2} representing ri ∈ {not at all, somewhat, highly},
because the computation in Algorithm 1 requires addition, and ordinal class labels such
as “somewhat” may not be summed, even when it represented by the faux-integer value
of “1”. That is, the ordinal-to-numeric gain mapping (Moffat, 2022) must be specified before
the scoring can be considered, and while IPSO provides metric-independent assessments, it
cannot be gain-mapping-independent.

Experimental evaluations in graded-relevance measurement contexts will be carried out
as future work.

4 Related Work

The most pertinent prior work is that of Diaz and Ferraro (2022). Their recall paired
preference (RPP) approach also carries out SERP comparisons “without effectiveness metrics”.
In this mechanism a distribution over users is assumed as to how many relevant items are
being sought from the SERPs, and for each user the SERP that delivers that many relevant
documents more quickly is the one that is preferred. As a distinction to previous work, Diaz
and Ferraro note that, like AP, their probability distribution is over recall levels rather than
rank positions, differentiating from metrics such as RBP and DCG. The relationship between
two SERPs is then determined by forming a preference expectation over the defined user

4 Meaning that relevance fractions are additive across documents, so that a 0.2 document in conjunction
with a 0.8 document is exactly as useful as a single 1.0 document, for example.
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population. Like our IPSO method, RPP reports an ordering between two SERPs rather
than scores for single SERPs that must then be compared. In the case of Diaz and Ferraro,
the distribution of user goals informs the outcome and a SERP pair always leads to a <,
=, or > outcome. In our work here we assume that users look at k or fewer documents,
seeking generality that covers all @k metrics, once the validity of Rules 1 and 2 is accepted;
but thus also needing to allow “don’t know” answers (the non-separable pairs) as well as
≤, =, and ≥ determinations. Diaz (2023) and Diaz and Mitra (2023) go on to consider two
further formulations to inform our understanding of how to compare SERPs with each other:
lexiprecision and lexirecall, developed by considering the lexicographic properties of SERPs.
These methods compare SERPs based on the position in the ranking of the first relevant
item that is not matched by relevance in the other SERP, or the rank position of the p th
relevant item for some selected value p, or the rank position of the last relevant item, or
some amalgam of such values.

In earlier work that anticipates our proposal here, Jones et al. (2015) note that there
is only a subset of depth-k rankings on which metrics can disagree. They then provide
exhaustive experimentation on ranked results lists of depth k = 10, with a total of 10 relevant
documents available (resulting in 1,023 such lists when ignoring the “all zeros” ranking), and
confirm that all such rankings do occur in organic ranking tasks, by empirically examining
submitted TREC runs. They also provide a more detailed analysis on when metrics tend to
disagree, and explore properties that may be predictive of such disagreement.

The relationship between user behavior and the underlying quality of ranked results lists
has been explored by a range of authors, resulting in a number of metrics for evaluating such
rankings (Moffat and Zobel, 2008; Robertson, 2008; Chapelle et al., 2009; Robertson et al.,
2010) and a greater understanding of the relationship these metrics have with assumed user
models (Sakai and Robertson, 2008; Chapelle et al., 2009; Dupret and Piwowarski, 2010;
Dupret, 2011; Carterette, 2011; Carterette et al., 2012; Moffat et al., 2017; Wicaksono and
Moffat, 2018; Zhang et al., 2020a; Moffat et al., 2022). The overarching theme of all of these
papers is that metric scores should be formulated in the context of how users are likely to
derive information from SERPs, so as to allow the computed scores to reflect an informative
quantity; it is our strong desire to retain and embrace that connection that has informed
our proposal here. In particular, it is important to note that we are not arguing for IPSO
evaluation to supersede metric-based evaluation; rather, we suggest IPSO as an augment for
a well-chosen metric.

Ideally, a metric score should be reflective of user satisfaction, as this is what ultimately
matters when measuring ranked retrieval systems. To this end, a number of works have
sought to establish a connection between metric score and user satisfaction. This then allows
metrics to be, at least in part, validated against the user experience (Huffman and Hochster,
2007; Jiang and Allan, 2016; Mao et al., 2016; Chen et al., 2017; Su et al., 2018; Liu et al.,
2018; O’Brien et al., 2020; Zhang et al., 2020b; Sakai and Zeng, 2021; Moffat et al., 2022).
On the other hand, Alex et al. (2022) have recently noted use cases in which it could be
important to measure SERP differences that might not be discernible by users, such as in
diagnostic situations, or perhaps as a model training objective.

Ferrante et al. (2017, 2021) have presented arguments to the effect that many traditional
effectiveness metrics may not be well-founded from a measurement point of view because
they are not on an interval scale; a claim that is strongly contested (Sakai, 2020; Moffat,
2022). Irrespective of the outcome of that debate, IPSO presents a metric-free way of carrying
out system comparisons to obtain guidance as to which system might be preferable. Indeed,
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this is one inherent benefit of the Sign test, which does not require magnitudes of differences
for meaningful hypothesis testing.

Moffat (2013) categorizes metrics according to seven numeric properties, including some
that embed Rules 1 and 2; and a number of other researchers have also considered measuring
effectiveness from what is referred to as an “axiomatic” viewpoint, of which Rules 1 and 2
are instances (Bollmann, 1984; Busin and Mizzaro, 2013; Amigó et al., 2017; Gupta et al.,
2019; Amigó et al., 2020; Giner, 2022). Axiomatic approaches have also been used in the
quest for retrieval models (Fang and Zhai, 2005).

The process of planning and executing experimental system comparisons has also received
considerable attention, including in regard to topic set size and statistical testing practices
(Smucker et al., 2007; Sakai, 2016b,a; Urbano et al., 2019; Ferro and Sanderson, 2022). Sakai
(2016b) considers the design of batch retrieval experimentation in terms of the number of
topics to employ to reach statistically valid outcomes. Sakai (2016a) also provides a detailed
systematic review on testing practices across over 1000 SIGIR and TOIS papers from 2006 to
2015. Other work has explored the reliability and predictivity of typical batch IR experiments
and measurement protocols (Cormack and Lynam, 2006; Rashidi et al., 2021) and some of
the limitations therein (Zobel, 2023).

Finally, work that describes the overall process of batch evaluation and issues that arise
in the formation of relevance judgments may also be of interest to the reader (Saracevic,
1995; Voorhees, 2002; Buckley and Voorhees, 2004, 2005; Sakai and Kando, 2008; Sanderson,
2010; Hofmann et al., 2016).

5 Conclusion

We have described IPSO, a mechanism for comparing two SERPs that is based on fundamental
ordering criteria that apply to every plausible effectiveness metric. While IPSO is not itself a
metric, and does not generate effectiveness scores, it can nevertheless be used as input to the
Sign test and hence derive a p value when two systems are being compared over a set of topics.
That is, IPSO can be used to provide evidence that a measured relationship in a challenger-
vs-champion experiment holds not just for the chosen metric – which for experimental fidelity
reasons should always be selected (and/or parameterized) based on the user characteristics
that are anticipated for that type of search – but (subject to the limitations we have noted) for
other metrics as well. In particular, a System A versus System B comparison]using a chosen
metric M(·) in which M(A)−M(B) < 0 with statistical confidence that is accompanied by
an IPSO-based significance outcome that also favors System B is a stronger result than one
based solely on the metric alone, and an augmented evaluation of the suggested type may be
a more powerful demonstration of generality than is possible with a table employing multiple
different effectiveness metrics.

The new IPSO mechanism also has limitations, of course. First is the need to understand
that it is a comparison tool, not a metric than can be used to score runs. It does not provide
a numeric value that tells you how good a SERP is in isolation, and even when it says
that one SERP is “not inferior” to another, it cannot quantify the extent of the possible
superiority. Nor can it indicate how close to being “perfect” any particular run is. For those
tasks, a metric is required, meaning that a specific user model must also have been selected.
As noted earlier, care is also required when interpreting the IPSO-derived p values. Any
significance observed relates to the null hypothesis |ns| = |ni|, and not to the more targeted
hypothesis that “System A and System B have the same performance when measured using
metric M(·)”.
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Nor is IPSO invariant in its evaluation with regard to depth k. As can be seen in Figure 4,
any given IPSO evaluation is likely to start by indicating equality between the two SERPs
(this is the starting point for k = 0, of course), then shift to a period of either “non-inferior” or
“non-superior”, and then, as k gets even larger (and sufficiently deep judgment are available
to support continued evaluation), may well undertake a second transition to “non-separable”.
That is, an IPSO Sign-test relationship established at one value of k might not continue
to apply at a larger value of k. We note that the same risk also applies to comparisons
based on metric scores – a significant relationship established at one value for k might not
be recognized as being significant at a different value of k. As a component of further
experiments to investigate more closely any sensitivity to the value of k, we also need to
carry out an extended experimental comparison across a range additional datasets, including
ones that employ graded-relevance scoring regimes, in order to provide further assurance
that IPSO leads to outcomes that can be usefully interpreted.

Despite these limitations, we recommend that researchers incorporate IPSO into their
experimental tool chains, and employ our suggested reporting framework in which one metric
is adopted, defended, and then deployed, with IPSO used as the “hedge” to provide evidence
in regard to generality.

Finally, note that the definition of IPSO is fundamentally tied to the assumption that
users consume each SERP sequentially. We posit that to be a reasonable assumption for
traditional linear text/link-based SERPs (and note that many previous authors have also
employed the same assumption), but it may not apply to (for example) the two-dimensional
SERP presentations that emerge from image and product search. Each user of those services
may have a regular browsing sequence that they tend to follow, but different users might
have different inspection orderings. Extending our analysis to this important case in a key
area for future work.

Software

Source code to allow IPSO-based comparisons on pairs of SERPs is provided at https:
//github.com/JMMackenzie/IPSO.
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