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ABSTRACT
Document expansion is a technique that aims to reduce the like-
lihood of term mismatch by augmenting documents with related
terms or queries. Doc2Query minus minus (Doc2Query--) repre-
sents an extension to the expansion process that uses a neural model
to identify and remove expansions that may not be relevant to the
given document, thereby increasing the quality of the ranking while
simultaneously reducing the amount of augmented data. In this
work, we conduct a detailed reproducibility study of Doc2Query--
to better understand the trade-offs inherent to document expan-
sion and filtering mechanisms. After successfully reproducing the
best-performing method from the Doc2Query-- family, we show
that filtering actually harms recall-based metrics on various test
collections. Next, we explore whether the two-stage “generate-then-
filter” process can be replaced with a single generation phase via
reinforcement learning. Finally, we extend our experimentation to
learned sparse retrieval models and demonstrate that filtering is not
helpful when term weights can be learned. Overall, our work pro-
vides a deeper understanding of the behaviour and characteristics
of common document expansion mechanisms, and paves the way
for developing more efficient yet effective augmentation models.
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• Information systems→ Retrieval models and ranking; Doc-
ument representation; Retrieval effectiveness.
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1 INTRODUCTION
The vocabulary mismatch problem — where the terms provided by
a user query do not match the terms used in some relevant docu-
ments — is a key problem in Information Retrieval (IR). Decades
of research have explored methods for alleviating vocabulary mis-
match, with the most common family of techniques being query
expansion methods, where queries are supplemented with addi-
tional terms to improve both recall (for retrieval) and precision
(for ranking) [1, 5]. Recently, however, there has been an interest
in document expansion, where each document is augmented with
additional terms or queries as an alternative method for alleviating
term mismatch [58, 59].

The most common document expansion techniques generate
queries that may be answered by a given document, which are
then augmented with the original document text prior to indexing.
Intuitively, document expansion can help to combat vocabulary mis-
match by incorporating terms that would not otherwise be present
in the text. Document expansion models have also been shown to
increase effectiveness by boosting the relative term frequency of
relevant terms within a given passage [17, 40, 59].

As a concrete example of document expansion, consider Table 1,
which shows a passage and a series of expansion queries from
the T5-based [63] Doc2Query model [58]. Without expansion, a
user query such as “which font type for math” would only
lexically match on the terms “font” and “math” (appearing three
times, and once, respectively). However, after appending 𝑁 = 80
expanded queries to the passage, those two terms have their fre-
quencies increased to 64 and 23, respectively. In addition, the terms
“which”, “type”, and “of” — which were not in the original passage
at all — now have term frequencies of 3, 6, and 9. Although some
of these terms are stopwords, it is easy to see the advantage of
document expansion. However, document expansion has some ob-
vious disadvantages, too. Firstly, methods like Doc2Query that rely
on sequence-to-sequence models like T5 [63] require a significant
amount of additional offline computation, as each document must
have an expensive series of inferences to compute the expansion
queries [66, 87]. Secondly, these expansion queries naturally add to
the size of the index, resulting in a larger space occupancy and, in
some cases, increased retrieval latency [27, 51, 58, 59].

Recently, Gospodinov et al. [27] offered a novel perspective on a
less obvious issue with document expansion: document expansion
models may hallucinate queries that are not actually answered
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by the given document. To resolve this issue, they proposed an
approach calledDoc2Queryminus minus (Doc2Query--) that scores
each document/expansion pair using a cross-encoder or bi-encoder
model and filters out those with low scores, aiming to reduce the
amount of hallucinated or otherwise non-relevant expansions.

In this work, we conduct a detailed reproducibility study of
Doc2Query--. Beyond our interest in exploring this interesting
research area and validating the work of Gospodinov et al. [27], our
motivation for conducting this study is fourfold:

(1) Holistic Evaluation: The original work focused on end-
to-end retrieval, where the final results lists were evaluated
using shallow precision-oriented metrics like NDCG@10
or Reciprocal Rank. However, lexical retrieval systems are
commonly used as first-stage retrieval systems, generating a
large set of candidate documents as input to amore expensive
ranking model [40, 77]. In such re-ranking pipelines, the first
stage ought to maximize recall. As such, we are motivated
to revisit the evaluation from a recall-oriented perspective
to provide a more holistic view of the trade-offs inherent in
document expansion and filtering.

(2) Lexical Matching: The rationale that led Gospodinov et al.
to explore filtering mechanisms is to remove poor queries
that were generated by sequence-to-sequence models1 like
T5 [63], as these models are prone to hallucination. However,
the retrieval systems used in the original work are based
on lexical matching. As such, the main risk present from
such hallucinations is that a non-relevant document may be
retrieved for a (user) query that matches the (hallucinated)
expansion query. On the other hand, it is possible that these
non-relevant queries could actually be helpful for boosting
the relevance signal in their target passages, even if the query
itself is not relevant or correct. Thus, we are motivated to
further understand where the improvements arise due to
filtering and to explore how “bad” expansions impact the
effectiveness of lexical ranking models.

(3) Learned Impact Scores: While the risk of including expan-
sion terms that do not accurately reflect the content of the
document must be acknowledged, current state-of-the-art
lexical models apply neural networks to determine the appro-
priate weight to give to each term, known as learned sparse
retrieval [56]. We hypothesize that learned sparse retrieval
models may already implicitly filter non-relevant terms by
assigning them a low weight, which motivates us to experi-
ment with document expansion and filtering in the context
of these models.

(4) Generating Better Queries: Another promising avenue
for exploration is the combination of the generation and
filtering phases into a single process; by generating better
queries in the first place, filtering may not be necessary at
all. To this end, we experiment with reinforcement learning
to train a query generator that is biased towards generating
queries with high filter scores.

Based on these focus areas, our main contributions are as follows:

1Those typically used for document expansion.

Table 1: Original passage (top), best five expansions after de-
duplication (middle), and worst five expansions (bottom) for
MSMARCO-v1 passage 1320289 (Doc2Query expansion) according
to the ELECTRA model.

If you are into typesetting mathematics, you might also be interested in
the Latin Modern Math fonts in the OpenType format. The Family. The
Latin Modern fonts are derived from the famous Computer Modern
fonts designed by Donald E. Knuth and described in Volume E of his
Computers & Typesetting series.

who designed latin modern math fonts, who designed the latin modern
font, who designed the modern fonts, latin modern fonts, who made
latin modern font

who is latin font?, what font is called computer modern slang, what is
the latin text font, what is lm modern font, where did the word math
come from

• We conduct a reproducibility and generalizability study of
Doc2Query-- and provide a deeper analysis of the impor-
tance of document expansion and filtering on both precision
and recall-oriented retrieval settings, including in both re-
trieval and re-ranking contexts;

• We explore a quality-aware query generation model in an
effort to avoid the expensive two-stage generate-then-filter
process; and

• We extend the Doc2Query-- framework to learned sparse
retrieval models to determine whether filtering can provide
additive improvements over learned impact scores.

Overall, our reproducibility study provides a more holistic view
of document expansion and filtering mechanisms, their efficiency
and effectiveness characteristics, and their application to wider
contexts beyond end-to-end BM25-based passage retrieval. Our
experimental code and resources are available: https://github.com/
175edda-sps/d2qminus-repro.

2 BACKGROUND
With the advent of large-scale pre-trained language models, the
field of Information Retrieval has seen a drastic evolution in terms
of search and ranking architectures. In particular, embedding-based
retrieval techniques and neural re-ranking strategies have been
shown to capture similarity beyond simple term matching systems,
resulting in improvements in various search contexts [24, 30, 33, 57].
We refer the reader to the survey of Lin et al. [40] for a more detailed
overview of these techniques.

Lexical Matching and Vocabulary Mismatch. Despite advances
in neural ranking, traditional lexical inverted index-based retrieval
systems are still widely used in the neural retrieval age due to their
simplicity, scalability, and their utility in finding documents match-
ing given terms [73, 88]. For example, inverted index-based systems
can be augmented with neural scoring functions to allow for much
more effective retrieval while maintaining similar efficiency to tradi-
tional statistical models [51, 56]. Similarly, hybrid search techniques
that combine both lexical and semantic matching are typically more
effective than relying on a single model [36, 37, 53, 78].

https://github.com/175edda-sps/d2qminus-repro
https://github.com/175edda-sps/d2qminus-repro
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Vocabulary mismatch is a common problem for classic lexical-
based models, where the query terms provided by a user do not
match the terms used to describe the same concept in a relevant
document [23, 83]. Ultimately, this means that a relevant document
may not be retrieved as it may not be matched at all during query
processing, harming effectiveness. A well-studied solution to this
problem is to expand the user query with additional terms to mini-
mize the rate of term mismatch [1]. However, query expansion can
be a risky prospect, as parameters can vary widely from query to
query, and issuing a poorly expanded query can significantly harm
effectiveness [8, 11, 29]. We refer to the survey of Azad and Deepak
[5] for a more detailed overview of query expansion techniques.

Document Expansion. Another technique for reducing term mis-
match — the one we focus on in this work — is known as document
expansion. The idea of document expansion is to augment a given
document with additional relevant terms to reduce term mismatch.
Given a collection of documents, D, and a document expansion
method, 𝐸, 𝐸 is applied to each document 𝐷 ∈ D to generate 𝑁
queries 𝐷 ↦→ 𝑄𝑁 . Typically, these resultant queries are simply ap-
pended to the corresponding document text to create a new corpus
D′, which can then be indexed and searched as usual. Previous
work has shown that the choice of 𝐸 can have a significant impact
on the effectiveness of document expansion [58, 59].

Historically, document expansion has been based on simple
heuristics. For example, expanding a document with inbound an-
chor text or terms from URLs has been explored [12, 20, 80]. His-
torical queries have also been used as a source of expansion terms
[60, 67], under the assumption that a click-graph can provide im-
plicit feedback on queries that should retrieve a given document
[16, 31]. Another approach applies statistical language modelling
for expanding documents with new, relevant terms [19, 70].

More recently, neural models have been applied to automatically
generate queries for a given passage. For example, the Doc2Query
method of Nogueira and Lin [58] trained a simple sequence-to-
sequence transformer to generate queries using top-𝑘 random sam-
pling [21], resulting in modest effectiveness improvements over
the BM25 baseline. However, replacing this simple sequence-to-
sequence transformer with the much larger T5 model [63] — known
as Doc2Query-T5 or DocT5Query — yields much larger improve-
ments [58]. More recently, Weller et al. [79] applied ChatGPT to
generate document expansions, but it is unclear whether these
expansions outperform the T5-based Doc2Query approach.

Document Filtering. The focus of our reproducibility study is
the work of Gospodinov et al. [27], who observed that the queries
generated by a given expansion model may not be relevant to the
given document 𝐷 , which may harm the effectiveness of retrieval.
Their solution, Doc2Query--, adds a filtering mechanism that uses
a relevance model to map a query/document pair to a relevance
score S = 𝑄 × 𝐷 ↦→ R. It is assumed that higher values of S
are more relevant. Next, this scoring function is applied to every
query/document pair in D. Finally, a threshold 𝑡 can be used to
retain only the queries surpassing the threshold:

D′ = {𝐷 + {𝑄 | S(𝑄,𝐷) ≥ 𝑡} | 𝐷 ∈ D} (1)

Clearly, this formulation is model agnostic since it depends only
on applying a global threshold 𝑡 to the distribution of S values

(referred to as a global filter). The choice of model then depends
on operational constraints such as the offline computational effort,
assuming that more expensive scoring models typically perform
better. To this end, the original work explored three models for
computing query/document scores; two cross-encoders (ELECTRA
[10, 61] andMonoT5 [57]) and a bi-encoder (TCT-ColBERT[69]).

3 EXPERIMENTAL SETUP
Datasets and Measures. Following the experimental setup of
Gospodinov et al. [27], we used the MSMARCO-v1 passage corpus
[7] as the basis of our study. We experiment with three query sets,
namely the Dev set consisting of 6,980 queries (sparsely judged,
averaging 1.1 judgments per query), and both the 2019 and 2020
TREC Deep Learning Track collections with deeper judgments (43
and 54 queries, 215 and 211 judgments per query, respectively)
[13, 15]. We evaluate runs using the official metrics (RR@10 for
Dev, NDCG@10 for the TREC collections); we also evaluate recall
at various cut-offs.

Beyond MSMARCO-v1, we extend our analysis to a subset of the
BEIR benchmark, computing NDCG@10 and Recall@100 following
common practice for BEIR [72]. In particular, we experiment with
DBPedia [28], TREC COVID [76], Robust04 [75], Touché [9], and
Quora, with 38.2, 493.5, 69.9, 19, 1.6 judgments per query, in turn
(see [72] for detailed statistics). The selection of this subset was
based on availability and computing resources.

Significance testing is conducted using a two-tailed pairwise 𝑡-
test with a Bonferroni correction; we report significance at 𝑝 < 0.05.
We note that cautionmust be appliedwhen interpreting significance
tests on the Dev collection, as the test is overpowered due to the
large number of topics [65]. We also note that the Dev and Touché
collections are only sparsely judged, which may lead to unstable
comparisons [3, 49].

Environment and Tools. All experiments were carried out on a
Linux workstation with a 32-core AMD Ryzen Threadripper Pro
5975WX operating at 3.6GHz with 512GiB of RAM and two Nvidia
RTX A5500 GPUs. Index sizes are computed in GiB, and latency is
reported as the mean response time over the large Dev query set.

Following the same setup of Gospodinov et al. [27], we conduct
our experiments using PyTerrier toolkit [43, 46, 47] and PISA [54].
We also use Anserini [81] and CIFF [39] for processing, indexing,
and exchanging raw JSON data between systems. Following best
practice [48, 55], query processing experiments are conducted using
the MaxScore algorithm [74] on SIMD-BP128 compressed indexes
[35] after document reordering [18, 50].

Models. The T5-based Doc2Query model [58] is used for docu-
ment expansion throughout the experiments presented. In partic-
ular, the publicly available 𝑁 = 80 expansion queries are used for
MSMARCO-v1 [42]; similarly, for BEIR, we made use of the 𝑁 = 20
queries made available by Thakur et al. [71]. We score the expan-
sion queries with the ELECTRA2 cross-encoder model [10, 61] as it
shows the top effectiveness in the work of Gospodinov et al. [27].
Unless stated otherwise, we use BM25 for lexical retrieval after tun-
ing the 𝑘1 and 𝑏 parameters on Dev using grid search in the range

2crystina-z/monoELECTRA_LCE_nneg31



SIGIR ’24, July 14–18, 2024, Washington, DC, USA Watheq Mansour, Shengyao Zhuang, Guido Zuccon, and Joel Mackenzie

0 20 40 60 80 100

Cumulative percentage of values

−10

0

10

Figure 1: The distribution of ≈ 700 million per-query score differ-
ences between the reference and reproduced Doc2Query-- (with
the ELECTRA scorer) on MSMARCO-v1.

[0.5, 2.5] with a 0.25 step, and [0, 1] with a 0.1 step, respectively;
we used PISA’s instantiation of BM25 [32, 64].

4 REPRODUCING DOC2QUERY--
This section outlines our main reproducibility experiments and
subsequent analysis.

Experiment: Scoring the Expansion Queries. Our first experi-
ment aims to reproduce the scoring phase of Doc2Query--. After
loading the MSMARCO-v1 corpus and the associated 𝑁 = 80 (per-
document) expansion queries, we apply the ELECTRA model to
compute a relevance score for each passage/query pair. Using a sin-
gle GPU, this process took approximately 300 hours, or about 1.75×
longer than reported by the reference work. This can be attributed
to our GPU having lower memory throughput, and our experimen-
tal server being used for other tasks during the experiment.

Although we use the same model as the reference work, minor
differences in score predictions are highly likely due to differences
in the experimental hardware. To measure this, we compute the
difference between our generated scores and the reference scores
on a per-query basis (denoted ΔS ). Figure 1 shows the resulting
distribution. Examining the absolute differences shows that, while
the majority of score differences are small (79% with |ΔS | ≤ 0.01
and 10%with 0.01 < |ΔS | ≤ 0.1), there are some notable differences
(9% with 0.1 < |ΔS | ≤ 1.0, and 1% with |ΔS | > 1.0). The cause of
these differences was found to be related to text encoding differences
between the input passages we downloaded, and the passages used
by theDoc2Query-- authors. In particular, they used the ir_datasets
tool [45] to load MSMARCO-v1 which automatically fixes encoding
errors, whereas we loaded the raw passages directly without fixing
these encoding errors. As prior work has noted that seemingly
minor changes can indeed lead to large effectiveness differences
[34, 41, 82, 85], we continue to use our reproduced scores in the
following analysis to ensure any such effects are observed.

Experiment: End-to-End Retrieval. The next step in our re-
producibility study involves filtering to retain only the highest
scoring queries, and then running end-to-end retrieval experiments
to measure the downstream effectiveness. In the reference work,
a global cut-off was tuned by measuring the RR@10 scores on the

MSMARCO-v1 Dev set. Doc2Query-- with ELECTRA was found to be
the strongest model with a global cut-off of 30% (that is, the top
scoring 30% of Doc2Query expanded queries were retained, and
the rest filtered out). We follow this and remove queries that are
below the 70 th percentile, append the remaining queries to their
corresponding passages, and then index the corpus accordingly.

We also explore whether a local filter (Doc2Query--LF) — ap-
plied by retaining the highest scoring 𝑡% of expansion queries on
a per-passage basis (not on the whole corpus) — can yield similar
effectiveness to the global filter. We are interested in this approach
since a local filter would be much easier to deploy in practice with
dynamic corpora; there is no need to compute the collection-wide
scores, allowing filtering to be applied on a document-by-document
basis. To this end, and following the experimental setup used by the
original authors, we tuned the value of 𝑡 to maximize RR@10 on the
Dev set and found that the best value of 𝑡 was at 90% (meaning only
the lowest scoring 10% of queries — 8 out of 80 — were removed
for each passage). Table 2 shows the results of our reproduction
pipeline with respect to the original work, along with the local
filtering approach.

Our first observation is that the reproduced results are relatively
close to those reported by Gospodinov et al. [27], even with the
noted differences in the computed filtering scores. For example,
we observe differences in RR@10 (Dev) of at most 0.001, and in
NDCG@10 (DL19 and DL20) of 0.031 and 0.008, all within 3.3% of
the original work. Interestingly, we find that our results are often
slightly better than the original work. Beyond the differences in
the filter scores, we believe that our parameter tuning grid-search
may have explored a wider number of values, thus providing small
benefits; the original grid search ranges were not reported. For these
early precision metrics, the findings from the reference work are
successfully reproduced — Doc2Query-- can significantly improve
the effectiveness of Doc2Query.

However, a different conclusion is reached when considering the
deeper recall-based metrics, where Doc2Query-- actually degrades
the effectiveness of the unfiltered Doc2Query approach. We revisit
this observation in the next experiment.

Additionally, the local filtering (Doc2Query--LF) is noticeably
worse than the global filtering (Doc2Query--) for all precision met-
rics. Therefore, we apply the global filtering for the remainder of
the experiments.

Finally, the last two columns of Table 2 report the efficiency
characteristics of each system. While it is difficult to directly com-
pare latency values with the reference work due to differences in
hardware and algorithmic configurations, we observe a speedup
of around 22% (from 10.7 to 8.8 ms), which is comparable to the
30% reduction observed by Gospodinov et al. [27].3 Similarly, our
reproduced Doc2Query-- index reduces the size of the Doc2Query
index from 1.47 to 0.94 GiB, a reduction of 56% (compared to their
reported 48% reduction). The most likely cause of this difference
is due to variance in the data (different encoding as previously
mentioned) and configuration options (such as the index block size
and index reordering). Overall, the efficiency trends observed when

3Note that in Table 2, the original Doc2Query-- (“Run supplied [27]”) efficiency num-
bers are copied directly from their paper [27].
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Table 2: Reproduced effectiveness measurements for Doc2Query--with the ELECTRA filter (top 30%) as compared to the BM25 and unfiltered
Doc2Query baselines. The first set of Doc2Query-- entries represent the original results, and the second set represent our independently
reproduced results. We also report mean response time (MRT) and index size. Significant differences with respect to the baseline system
(third line) are marked with vertical arrows (the upward arrow means significantly better, and the downward significantly worse).

System Notes RR@10 NDCG@10 Recall@100 Recall@1000 MRT Size

Dev DL19 DL20 Dev DL19 DL20 Dev DL19 DL20 ms GiB

BM25 Tuned ↓0.187 ↓0.508 ↓0.470 ↓0.671 0.511 0.581 ↓0.858 0.752 0.795 6.9 0.74
Doc2Query 𝑁 = 80, Tuned ↓0.279 0.622 0.601 ↑0.831 0.590 0.703 ↑0.950 0.814 0.843 10.7 1.47

Doc2Query-- Run supplied [27] 0.323 0.669 0.614 0.819 0.572 0.669 0.934 0.792 0.816 23.0 0.95
Doc2Query-- Index supplied [27] 0.323 0.669 0.614 0.819 0.572 0.669 0.934 0.792 0.816 9.2 0.90

Doc2Query-- Default params, ours 0.322 0.672 0.616 ↓0.816 0.573 0.664 0.934 0.793 0.813 9.3 0.94
Doc2Query-- Tuned, ours 0.322 0.689 0.619 ↑0.821 0.584 0.675 0.935 0.799 ↑0.828 8.8 0.94
Doc2Query--LF Tuned, ours ↓0.282 0.633 0.612 ↑0.830 0.591 0.695 ↑0.950 0.811 0.839 10.7 1.33

Table 3: NDCG@10 after re-ranking different first-stage runs using
MonoT5 at two different cut-offs. No significant differences were
observed between any of the systems. Note that Doc2Query-- rep-
resents our reproduced, tuned system.

System 𝑘 = 100 𝑘 = 1000

DL19 DL20 DL19 DL20

BM25 0.712 0.682 0.744 0.704
Doc2Query 0.749 0.714 0.740 0.705
Doc2Query-- 0.745 0.718 0.740 0.703

comparing Doc2Query and Doc2Query-- follow those reported in
the original work.

Experiment: Re-ranking. Given that the models reported in Ta-
ble 2 are likely to be deployed as an efficient first stage in a multi-
stage retrieve and re-rank pipeline [40, 77], the reduced recall of
Doc2Query-- raises concerns regarding its fitness for such pipelines.
To understand how much recall matters in this scenario, we re-rank
a subset of the systems from Table 2 using the strong MonoT5
model [57]4 for both 𝑘 = 100 and 𝑘 = 1000, and report the out-
comes in Table 3. Interestingly, we find that there are no significant
differences across the first-stage systems, even where the recall
gap is quite evident in the initial lists. We attribute this to finding
to the notion of saturation — so long as the re-ranker has access
to “enough” good documents, adding more does not significantly
improve the re-ranking effectiveness. However,MonoT5 may also
exhibit some bias towards BM25 ranked lists since these formed
the basis of its training regime [26]. We leave a more thorough
exploration to future work, where we will investigate the effect of
parameter choices, training regimes, and first-stage recall on the
effectiveness of large language model (LLM) based re-rankers.

Experiment: New vs Copied Terms. In the first Doc2Query
work [58], the authors analysed the expansion terms and found that
33% of expansion terms were not present in the original document
(new terms), and the remaining 67% were already present in the
4See the llm-rankers library [84]: https://github.com/ielab/llm-rankers

Table 4: Ablation study on the effect of new and copied terms with
respect to Doc2Query and Doc2Query-- on the Dev queries.

Configuration RR@10 R@1000 Expansion %

Original text 0.187 0.858 0%
w/ d2q new only 0.174 0.875 24%
w/ d2q-- new only 0.214 0.894 13%

w/ d2q copied only 0.233 0.908 76%
w/ d2q-- copied only 0.276 0.904 87%

w/ d2q new + copied 0.279 0.950 100%
w/ d2q-- new + copied 0.322 0.934 100%

d2q expansion only 0.230 0.906 100%
d2q-- expansion only 0.281 0.847 100%

document (copied terms). However, they did not attempt to quantify
where the effectiveness improvements over the default passages
arise; it may be that the new terms are more important due to
their ability to reduce vocabulary mismatch, or that the copied
terms are useful in increasing the weight of important terms within
given passages [17]. Lin et al. [40] bridged this gap by evaluating
the effectiveness of Doc2Query when the expansion incorporates
new terms only, copied terms only, both new and copied terms
(the default setting), and all expansion terms in lieu of the original
document content. They found that both new and copied terms
contribute to the overall effectiveness of Doc2Query.

Our next experiment extends this study to Doc2Query-- given
that the overall term distribution is likely to have changed. We
lower-cased the expansion queries and original text, removed stop-
words, and then applied stemming5 to categorize terms into the
new and copied sets. We experimented with three combinations:
original text + new terms only, original text + copied terms only,
and all expansion terms (both new and copied) without the original
passage text. We also report the original text + both new and copied
terms, thus representing the default Doc2Query or Doc2Query--
systems. Beyond measuring effectiveness, we also computed the
5We used the same stopwords list and stemming model as Doc2Query--.

https://github.com/ielab/llm-rankers


SIGIR ’24, July 14–18, 2024, Washington, DC, USA Watheq Mansour, Shengyao Zhuang, Guido Zuccon, and Joel Mackenzie

percentage of expansion terms included in each setting with respect
to the entire set of expansion terms.

Table 4 reports the results, where four important observations
can be noted. The first one is that Doc2Query-- has a higher per-
centage of copied terms at 87% (compared to 76% for Doc2Query),
indicating that the filtering model may prefer copied terms over
new terms. Second, Doc2Query scored a higher recall in all com-
binations (as compared to Doc2Query-- under the same setting)
except for new terms only, which indicates that the lower rate of
new terms may indeed harm recall. Third, the new or copied term
sets alone are not adequate to achieve the best effectiveness — con-
firming the findings of Lin et al. [40] — and so finding the best
combination of these sets is the main challenge for optimizing doc-
ument expansion models. Fourth, it is evident from the expansion
only rows that the content retained by Doc2Query-- is much more
effective than the expansions generated by Doc2Query, indicating
that the original document content may be less important in the
context of Doc2Query--; again, this can be attributed to the higher
rate of copied terms which simply boost the existing document
content rather than introducing new, unseen terms.

Experiment: Term Filtering Ablation. Based on our previous
observations, both new and copied terms are important components
for Doc2Query--. However, we also know that filtering expansion
queries with low ELECTRA scores can harm recall, as the overall
proportion of new terms is lower for Doc2Query-- as compared to
Doc2Query, presumably increasing vocabulary mismatch. As such,
we are interested in understanding how the quality and composition
of the expansion set impact result quality. For example, if keeping
the top 30% of the queries yields the best effectiveness, what would
happen if we kept the bottom 70% of the queries instead? Can
these queries help improve effectiveness at all? To measure this,
we run Doc2Query-- with a global threshold 𝑡 ∈ {10, 30, 50, 70, 90},
and examine the effect of keeping the top (highest scoring) 𝑡% or
the bottom (lowest scoring) 𝑡% of expansion queries (achieved by
switching the ≥ sign with a < sign in Equation 1).

Figure 2 illustrates our findings. It is clear that the proportion
of the new and copied terms (Figure 2a) varies drastically between
the term sets we explored. In particular, the ELECTRA filter favours
expansion queries that have a very high term overlap with the
original passage, as the rate of copied terms increases as the reten-
tion threshold increases. Figure 2b and Figure 2c show the effect of
these expansion sets on both Recall@1000 and NDCG@10, respec-
tively. Although removing low scoring expansion queries brings
noticeable enhancements to NDCG@10, it causes some decline
in the recall. Looking at Figure 2b, it is evident that the recall of
Doc2Query-- suffers with smaller expansion sets, irrespective of
whether they are good or bad, suggesting that new terms are in-
deed more important for maximizing recall as compared with copied
terms, confirming the findings in Table 4. Andwhile this experiment
also demonstrates that including “bad” queries may not necessarily
harm recall, there is still a delicate balance between the quality of
the expansion terms and the effectiveness of the system.

5 EXTENSIONS
In the previous section, we examined Doc2Query-- with a focus
on reproducibility. In this section, we extend our experimentation
beyond the original work of Gospodinov et al. [27].

5.1 Testing Zero-Shot Generalization
Since Doc2Query-- was only tested on MSMARCO-v1, we opt to test
whether it generalizes to other datasets. To this end, we score
and evaluate Doc2Query-- in a zero-shot manner on five datasets
from the BEIR benchmark: DBPedia, COVID, Robust04, Touché, and
Quora. Given the zero-shot nature of BEIR, we applied default BM25
parameters (𝑘1 = 0.9 and𝑏 = 0.4) and selected two global thresholds
for Doc2Query-- (top 𝑡 = 30% and 𝑡 = 50%).6

Table 5 draws a comparison between these systems with respect
to Doc2Query. From a recall perspective, Doc2Query-- (𝑡 = 30%)
is significantly worse than Doc2Query on all datasets but Touché.
From a precision perspective, Doc2Query-- is only significantly
worse on DBPedia and Quora with respect to NDCG@10, and out-
performs Doc2Query on COVID at 𝑡 = 50%. This general decline
suggests that Doc2Query-- is not a good option under the zero-shot
setup. Further investigation of the reasons behind this decline is
left for future work; however, we do have a few hypotheses. Firstly,
the zero-shot setting means that parameters cannot be tuned, mak-
ing it difficult to assess whether the system is properly configured.
Secondly, it may be the case that 𝑁 = 20 queries are insufficient
for filtering, and more queries would be required to see improved
effectiveness. Thirdly, the truncation of long text documents during
the expansion and filtering process means that the cross-encoder
model might not have access to the full context of the document, bi-
asing the expansion to the beginning of the documents. We believe
these aspects are worth further investigation in future work.

5.2 Better Queries via Reinforcement Learning
Doc2Query-- utilizes the ELECTRA cross-encoder in a two-stage
pipeline. This process involves initially generating a substantial
number of queries and subsequently evaluating them using ELEC-
TRA. As both generation and filtering are computationally expen-
sive, a natural question arises: can we streamline this process by
directly generating queries with high ELECTRA scores?

To address this question, we employ Reinforcement Learning
(RL) to train a Doc2Querymodel that optimizes the ELECTRA score
directly. Specifically, we utilize the Proximal Policy Optimization
(PPO) algorithm [68], with ELECTRA serving as the reward model.
The policy network is initializedwith the originalDoc2Querymodel
checkpoint. During each training step, passages are randomly sam-
pled from the MSMARCO-v1 passage dataset. The policy network
generates queries based on these passages, and the reward model
assigns scores to the generated queries. The training objective is to
adapt the policy network to maximize the reward provided by the
ELECTRA model.

Figure 3a shows the ELECTRA score distribution of queries gen-
erated by our RL-trained Doc2Query model (RLGen) as compared
to the original Doc2Query model. The figure clearly indicates a
positive shift in the score distribution after training Doc2Query

6Note that we select the less aggressive 𝑡 = 50% threshold since we have only 𝑁 = 20
expansion queries for each document in the BEIR collection.
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(a) Proportion of new and copied terms. (b) Recall@1000 as the global threshold varies. (c) NDCG@10 the global threshold varies.

Figure 2: The distribution of the expansion terms (left) and effectiveness analysis of the bottom (B) and top (T) thresholds on DL19 and
DL20 with respect to Recall@1000 (middle) and NDCG@10 (right). “T30” represents the reported Doc2Query-- system from the previous
experiments, and “All ” represents the Doc2Query baseline; both are marked with vertical dotted lines.

Table 5: Effectiveness of two baselines (BM25 and Doc2Query) and two Doc2Query-- configurations across five datasets of BEIR benchmark.
Significant differences with respect to the baseline (Doc2Query) are marked with vertical arrows.

System NDCG@10 Recall@100

DBPedia COVID Robust04 Touché Quora DBPedia COVID Robust04 Touché Quora

BM25 ↓0.320 ↓0.571 ↓0.407 ↑0.448 ↑0.780 ↓0.472 ↓0.107 ↓0.367 ↑0.581 0.972
Doc2Query 0.347 0.668 0.430 0.289 0.769 0.499 0.126 0.392 0.543 0.973
Doc2Query-- (𝑡 = 30%) ↓0.314 0.664 0.421 ↑0.361 ↓0.660 ↓0.459 ↓0.118 ↓0.380 0.570 ↓0.939
Doc2Query-- (𝑡 = 50%) ↓0.333 0.683 0.423 ↑0.342 ↓0.721 ↓0.462 0.123 0.386 0.564 ↓0.955

with the RL algorithm, thereby demonstrating the accomplishment
of the intended objective. Figure 3b and Figure 3c demonstrate
that the RLGen tends to produce longer queries7 and, interestingly,
incorporates a higher percentage of copied terms and fewer new
terms compared to Doc2Query.

While RLGen generates queries with higher ELECTRA scores,
the results in Table 6 suggest that this gain does not necessarily
translate to improved retrieval effectiveness. In fact, the RLGen
model is significantly less effective than Doc2Query-- across all
datasets and metrics. These unexpected results indicate that sim-
ply optimizing for the ELECTRA score may lead to a sub-optimal
policy. In particular, the queries from RLGen typically copy term
sequences from the input passage rather than expanding new terms,
confirming our earlier observation of ELECTRA preferring queries
with copied terms. In short, higher ELECTRA scores do not nec-
essarily translate to higher effectiveness. In future work, it would
be interesting to see if a diversity-aware RL policy could lead to a
more effective single-stage document expansion model, allowing
filtering to be bypassed entirely. We are also interested in exploring
the effect of leveraging the final retrieval effectiveness as a reward
instead of the estimated relevance.

5.3 Query Filtering for Learned Sparse Retrieval
Finally, we turn our attention to learned sparse retrieval (LSR) meth-
ods. In particular, we are interested in determining whether filtering
7Lengths can be quite long (up to around 50-60 terms) but are generally short. We
trimmed Figure 3b at 𝑦 = 30 for readability.

low-scoring expanded queries can lead to more effective LSR meth-
ods — or, in other words, whether the same gains observed from
filtering on traditional BM25 rankers translate to learned ranking
models. Prior work has demonstrated the importance of document
expansion in the context of LSR and, in particular, augmenting
documents with new relevant terms [38, 42, 52], but the effect of
including non-relevant expansion terms has not been studied.

To measure how filtering affects LSR, we employ two LSR meth-
ods that have been shown to benefit from document expansion,
namely DeepImpact [54] and UniCOIL [25, 38]. First, we repro-
duce the original results from both works by applying the 𝑁 = 80
Doc2Query generated queries to each document in the original cor-
pus and then conducting inference on these augmented documents
with the original models;8 the resulting data is then indexed via
PISA and the top 𝑘 = 1000 documents are retrieved across the same
collections and settings as in Section 4. As baselines, we reused
existing indexes from a recent study on LSR methods [51]. Table 7
shows the results. Firstly, we find that our reproduced DeepImpact
system outperforms the results reported by Mallia et al. [52]. Our
assumption is that this is due to the original work applying 𝑁 = 40
expanded queries per passage, whereas we apply 𝑁 = 80 following
earlier experiments. Consequently, processing latency and index
size are slightly higher in our reproduced systems. We observed
similar trends for UniCOIL, although the overall effectiveness was
not consistently improved by including more expansion queries.

8https://github.com/luyug/COIL/ + castorini/unicoil-msmarco-passage and
https://github.com/terrierteam/pyterrier_deepimpact

https://github.com/luyug/COIL/
https://github.com/terrierteam/pyterrier_deepimpact
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Table 6: Efficiency and effectiveness comparison betweenDoc2Query-- and the RLGenmodel. RLGen is significantly worse thanDoc2Query--
across most collections and metrics.

System Notes RR@10 NDCG@10 Recall@100 Recall@1000 MRT Size

Dev DL19 DL20 Dev DL19 DL20 Dev DL19 DL20 ms GiB

Doc2Query-- Tuned, ours 0.322 0.689 0.619 0.821 0.584 0.675 0.935 0.799 0.828 8.8 0.94
RLGen 𝑁 = 80, tuned, ours ↓0.235 ↓0.534 ↓0.557 ↓0.733 ↓0.525 ↓0.627 ↓0.897 0.760 0.816 9.4 1.48

(a) Score distribution. (b) Length of expansion queries. (c) Proportion of new and copied terms.

Figure 3: ELECTRA score distribution for Doc2Query and RLGen (left). A detailed comparison is shown for query length (middle) and
proportion of new and copied terms (right) for each model across fixed-range (20%) buckets of ELECTRA scores.

Table 7: Effectiveness of learned sparse retrieval systems, including those incorporating Doc2Query--. For significance testing, both
DeepImpact and UniCOIL with 𝑁 = 80 are used as the baselines for the respective system-level comparisons.

System Notes RR@10 NDCG@10 Recall@100 Recall@1000 MRT Size

Dev DL19 DL20 Dev DL19 DL20 Dev DL19 DL20 ms GiB

Doc2Query-- Tuned, ours 0.322 0.689 0.619 0.821 0.584 0.675 0.935 0.799 0.828 8.8 0.94

DeepImpact 𝑁 = 40, index supplied [51] ↓0.327 0.696 0.652 ↓0.842 0.597 0.695 0.948 0.806 0.834 17.4 1.53
DeepImpact 𝑁 = 80, ours 0.341 0.706 0.658 0.855 0.585 0.696 0.955 0.811 0.837 19.2 1.77
DeepImpact-- 𝑁 = 80, 𝑡 = 70%, ours 0.341 0.700 0.655 0.851 0.589 0.694 0.952 0.799 0.830 15.7 1.42

UniCOIL 𝑁 = 40, index supplied [51] 0.352 0.701 0.675 ↓0.861 0.607 ↓0.701 ↓0.958 0.829 0.843 26.0 1.33
UniCOIL 𝑁 = 80, ours 0.350 0.696 0.675 0.868 0.605 0.711 0.964 0.839 0.850 33.6 1.71
UniCOIL-- 𝑁 = 80, 𝑡 = 70%, ours 0.353 0.687 0.680 0.870 0.600 0.717 0.961 0.832 0.844 28.4 1.41

In any case, our results are comparable to those reported in the
original work, so we regard our reproduction of these baselines as
successful.

Next, we run the same end-to-end pipeline, butmodify the corpus
augmentation step to only include the top 𝑡%highest scoring queries
(from ELECTRA) with 𝑡 ∈ {10, 30, 50, 70, 90}. This allows us to
isolate the effect of including different levels of filtering on the
effectiveness of learned sparse retrieval. We only report the best-
performing value of 𝑡 (𝑡 = 70%) after tuning it on the Dev queries.
Evidently, the filtered LSR systems (DeepImpact-- and UniCOIL--)
are empirically similar to their unfiltered counterparts; however,
they can provide slightly better efficiency characteristics (18–22%
less time, and 18–25% less space, respectively). Interestingly, this
indicates that in the LSR scenario, filtering does not provide an
additive effect [4]. One possible explanation is that LSR models are

already implicitly incorporating filtering by assigning low-impact
scores to non-relevant terms within each document. However, more
experiments would be required to either confirm or refute this
hypothesis. Furthermore, it is worth noting that similar efficiency
and effectiveness can be achieved by both baseline LSR systems
with 𝑁 = 40 queries per document, raising further questions about
the utility of filtering in the LSR scenario. In future work, it would
be worth exploring the complex efficiency-vs-effectiveness trade-
offs between various levels of query generation and query filtering
in the context of LSR mechanisms.

6 SUMMARY OF FINDINGS
Finally, we summarize the key findings from our reproducibility
study, opportunities for future work, and some limitations.
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Reproducibility. Overall, our independent study successfully re-
produced the key findings of the Doc2Query-- work. In particular,
using the ELECTRA model to filter expansion queries from the
T5-based Doc2Query model yields significant improvements in
early precision metrics on the MSMARCO-v1 corpus. Furthermore,
Doc2Query-- improves both the space and time efficiency of top-
𝑘 retrieval. While some experimental differences were observed,
these were primarily due to differences in the data preparation
process and in the configuration of systems.

Practicality. A range of our experiments focused on aspects re-
lated to the practicality of deploying systems such as Doc2Query
and Doc2Query--. For example, we explored whether local filter-
ing can be applied to Doc2Query-- instead of the global filter. On
end-to-end retrieval experiments, this reduced the effectiveness of
Doc2Query--. However, in the context of re-ranking, it was found
that all models yielded comparable effectiveness, suggesting that
the best choice of the first-stage retrieval system depends on the
context in which it is deployed. If the first stage is the only stage,
then usingDoc2Query-- can be a good option, depending on the col-
lection and the data available for training and tuning. If re-ranking
is applied, then there is a complex trade-off between aspects such
as the index size, the value of 𝑘 , and, in turn, the first- and second-
stage latency. In particular, care must be taken to ensure a sufficient
recall base is supplied to the downstream re-ranker while aiming
to keep efficiency under control. Exploring this trade-off space in
greater detail was out of the scope of this study.

Reinforcement Learning. Another practicality improvement we
measured was the use of reinforcement learning to yield better
queries in the hope of avoiding the filtering process altogether.
Unfortunately, our failed approach demonstrates that directly opti-
mising for increased ELECTRA scores results in biased queries that
actually reduce effectiveness. A promising avenue of future work
is to investigate how to incorporate the notion of diversity into
the RL policy, ensuring that a mix of new and copied terms can be
generated. Another option is to investigate alternative formulations
of the policy optimization framework [62, 68].

Learned Sparse Retrieval. Applying Doc2Query-- to the learned
sparse retrieval regime demonstrated that query filtering does not
increase effectiveness when term impacts are learned. Interestingly,
it may be that Doc2Query-- and learned sparse retrieval models
are two sides of the same coin. For example, our experiments con-
firmed that both Doc2Query and Doc2Query-- improve effective-
ness through a delicate combination of term expansion and term
re-weighting. Similarly, learned sparse retrieval systems are sensi-
tive to the inclusion of expansion terms and re-weight terms within
a document based on their estimated relevance. This may explain
why filtering has no effect on LSR methods; they are already filter-
ing non-relevant terms by assigning them low weights. In future
work, we plan to explore this idea in more detail to better under-
stand whether these different approaches are, in essence, exploiting
the same underlying qualities to improve effectiveness.

Limitations. Throughout our study, we have made a best endeav-
our to remain faithful to the original experimentation and settings
from prior work. However, occasionally, we have diverged from
those settings. For example, experiments on BEIR applied only

𝑁 = 20 expansion queries due to computational constraints. Simi-
larly, we only explored the best-performing filtering mechanism
from the original Doc2Query-- paper, ELECTRA, and did not re-
produce the remaining models. Another key limitation is that the
models explored in this work were trained on MSMARCO-v1 given
the availability of large-scale training data [14]. It is plausible that
better effectiveness would be observed in the zero-shot retrieval
setting, for instance, if more diverse training data is available.

Overall, document expansion and filtering methods are com-
putationally expensive since they typically involve inference on
cross-encoders, limiting the number of experiments that can be
conducted in a reasonable amount of time and computational re-
sources. However, cross-encoders are not the only viable approach
for neural document expansion. One alternative is to use a masked
language model (instead of a sequence-to-sequence transformer) to
generate a series of unigrams or tokens that can be appended to the
given document [22, 44, 86, 87]. While these methods are typically
much more efficient than their sequence-to-sequence counterparts
[66], they do not generate syntactically correct queries [27, 51].
Ultimately, this means that a cross-encoder may not be able to ac-
curately score expansion tokens, as they are typically trained on
natural language sequences; nevertheless, this is indeed an impor-
tant avenue for future exploration. Interestingly, as discussed above,
learned sparse retrieval models could be considered as a viable fil-
tering mechanism for bag-of-words based expansion models, given
their ability to evaluate relevance on a term-by-term basis. We look
forward to examining this connection more deeply in future work.

Finally, the quality vs effectiveness trade-offs between different
document expansion methods — including cheap, traditional, ap-
proaches [6], and expensive LLM-based methods such as ChatGPT
[2, 79] — has not been widely explored. Adding the notion of filter-
ing to this complex space could yield better operational trade-offs
than those already explored.

7 CONCLUSIONS
In this reproducibility study, we provide a comprehensive analysis
of Doc2Query-- across various contexts, including first-stage re-
trieval, second-stage re-ranking, zero-shot out-of-domain retrieval,
and learned sparse retrieval. We also proposed and evaluated simple
yet practical improvements to the original Doc2Query-- approach,
including local filtering and reinforcement learning-based query
generation.

Our empirical evaluation on MSMARCO-v1 successfully repro-
duced the findings of Gospodinov et al. [27], demonstrating that
Doc2Query-- offers both efficiency and effectiveness improvements
over Doc2Query. We also found that while Doc2Query-- harms
recall over Doc2Query, this has no negative effect on re-ranking
effectiveness. Extending our analysis to a subset of the BEIR bench-
mark shows mixed effectiveness in the zero-shot setting, with
Doc2Query generally outperforming Doc2Query--. Finally, apply-
ing Doc2Query-- to learned sparse retrieval systems demonstrated
modest efficiency improvements, but the large effectiveness gains
observed on BM25 did not translate to these methods.
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