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Abstract

Since their emergence some two decades ago, indexes
based on the Burrows-Wheeler transform (BWT) have
been intensely studied and today find wide use in
genomics, where they form the basis of software tools
for read alignment and k-mer lookup—routine tasks in
modern data-intensive bioinformatics pipelines.

BWT-based indexes reduce an existential query for
a pattern P of lengthm to a sequence of up tom pairs of
rank queries on a sequence derived from the underlying
indexed data. In general these rank queries exhibit poor
locality of memory reference, with each pair causing
one or two cache misses, something that has become
generally accepted as a limitation of these indexes.

However, in the above mentioned applications
a typical experimental run will search for 100s of
millions—even billions—of patterns using the index. In
this paper we show that, taken across such a large set
of patterns, rank queries do exhibit locality of memory
reference and that this can be exploited by reorganising
the order in which rank queries are issued. We show
this leads to significant performance gains—in particu-
lar, k-mer lookup queries can be answered several times
faster when a batch of patterns is treated holistically.

1 Introduction

The Burrows-Wheeler transform (BWT) [9] of a string
T of n = |T | symbols drawn from an alphabet σ is
a reversible permutation of the symbols of T , defined
by the lexicographical order of T ’s cyclic rotations. The
BWT was introduced as a tool for data compression, but
its deep relationship to pattern matching was observed
by Ferragina and Manzini [13] who described an index
taking space proportional to the empirical entropy of T
while being able to count the number of occurrences of
a pattern P in T in O(|P | log σ) time. In the 25 years
since, BWT-based text indexes have gained widespread
use in the field of genomics, for tasks such as read
alignment [24, 23, 25, 16] and genome assembly [33, 12].

The spectral Burrows-Wheeler transform
(SBWT) [4] is a recent variant of the BWT spe-
cialized for k-mer lookup queries on the k-spectrum of
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T—the set of all distinct k-length substrings occurring
in T . A k-mer lookup query asks for the colexicographic
(colex) rank of a query pattern P [1..k] amongst all
distinct k-length strings occurring in T (or ⊥ if P
does not exist in T ’s spectrum). These queries have a
multitude of applications in high-throughput genomics,
for example in algorithms for pseudoalignment [5].

A k-mer lookup query can be reduced to a sequence
of up to k pairs of rank queries on the SBWT sequence,
denoted X, which is a sequence of symbols derived
from and encoding T ’s k-spectrum (we give a formal
definition below). A rank query rankc(i) returns the
number of occurrences of symbol c in X[1..i]. For a
query k-mer P , each pair of rank queries issued delineate
the colex interval of the k-spectrum that contains all k-
mers having P [1..i] as a suffix.1 Thus, each step in the
lookup process may take the current interval to a very
distant region of colex space from the previous interval.
The result is cache misses—approximately one per rank
query, something that has become a generally accepted
price with the use of (S)BWT-based indexes.

In the pseudoalignment application mentioned
above, a single experimental run may issue billions of
k-mer lookups. The prevailing view in both theoretical
work and in software tools implementing BWT-based
indexes is that queries are independent and are pro-
cessed one at a time. For reasons that will become clear,
we call this horizontal batch processing. Given a batch
of patterns P1 . . . Pb, we search for P1 first (issuing up
to 2|P1| rank queries), before moving to P2 (possibly
another 2|P2| rank queries), and so on. With horizon-
tal batch processing, no relatedness between the rank
queries across patterns in the batch is exploited. There
are, however, many ways in which performance can be
improved by treating a batch of patterns holistically.
To take a simple example, patterns sharing long com-
mon prefixes (and, at an extreme, identical patterns)
will issue many identical rank queries.

Contributions With the preceding discussion in mind,
this article explores a range of techniques for exploiting
batched query processing to improve the per-query

1Pattern matching search in traditional BWT-based indexes
works essentially the same way.
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performance of BWT-based indexes. For the sake
of keeping scope reasonable, we focus throughout on
the SBWT and k-mer lookup queries. Our main
contributions are summarized as follows.

1. We describe an orthogonal approach to horizontal
processing—vertical batch processing—that, via a
careful reorganization of computation, drastically
reduces the number of cache-misses compared to
processing queries independently. At a high level,
the idea is to view a batch of b patterns each of
length k as a b×k matrix. In contrast to horizontal
processing, in which the matrix is processed one
row (i.e. pattern) at a time, scanning the characters
in each row left-to-right, vertical search processes
the matrix columnwise. The upshot is that for
a given position within the k-mers (i.e. column)
all rank queries for a given letter are now issued
in a non-decreasing sequence of positions. This
translates, essentially, to making k cache-friendly
passes over the SBWT and is 7× faster than basic
horizontal processing in our experiments.

2. Streaming search is a form of horizontal batch pro-
cessing that aims to exploit the structure of a cer-
tain type of query batch, in particular when the
query k-mers are part of a longer string. This sce-
nario is exploited by hashing-based k-mer lookup
methods [28, 31] via use of rolling hash functions,
similar to Karp-Rabin [22]. It can also be exploited
by SBWT-based methods by storing a bit vector in-
dicating the boundaries of k-mers sharing the same
(k− 1)-length prefix [4]. In this paper we explore a
generalization of this approach that instead stores
the longest common suffix of each k-mer with its
colexicographic predecessor. This data structure
was used recently in the context of computing sig-
natures of k-mers called finimizers [2]. We apply it
here directly to the k-mer lookup problem.

3. We then show how to combine vertical search with
streaming horizontal search. This hybrid approach
achieves even greater throughput and is 3-4× faster
than hashing-based k-mer lookup methods.

We emphasise that while our focus is on the SBWT
in this paper, we expect many of our techniques to
translate to other forms of BWT index. We return to
this subject briefly toward the end of the paper.

Roadmap This article is organized as follows. In the
remainder of this section we review the sparse related
work on batch query processing for BWT-based indexes,
before laying down notation and important preliminary
concepts in Section 2. Section 3 describes horizontal

and vertical k-mer lookup for a batch of query k-mers.
Section 4 then extends these approaches to an impor-
tant special case where sub-batches of the query k-mers
come overlapping one another, i.e., embedded in longer
strings. This section shows how vertical search and
streaming search can be effectively combined. Section 5
reports on extensive experiments measuring the perfor-
mance of our new techniques. Conclusions, reflections,
and avenues for future work are then offered.

Related Work For many important problems, such
as, e.g., nearest neighbor queries [19], selection [8], and
predecessor queries [6], superior performance can be
achieved, both in theory and in practice, by considering
a batch of queries holistically.

As noted above, prior work on batched process-
ing for indexed pattern matching is sparse. Popular
BWT-based read-alignment tools such as BowTie [23],
BWA [25], Soap [26], and pseudoalignment tools like
Themisto [5] use horizontal processing—that is, they
process one pattern at a time.

In theoretical work, Gagie et al. [15] show that
given the LZ parsing of a concatenation of t patterns
of total length ℓ and maximum individual length m, the
number of occurrences of each pattern can be computed
in a total time of O((z + t) log ℓ logm log1+ϵ n), where
z is the number of phrases in the parse. We remark
that computing the LZ parsing takes O(ℓ) time (see,
e.g., [21]). In a similar vein, Gog et al. [17] explore
the scenario where the pattern batch itself is allowed
to be indexed. Such heavy preprocessing may have
applications where the same batch is to be searched for
in many different texts, but is not of interest to us here.

2 Preliminaries

Strings Because we are motivated by applications in
genomic sequence analysis, throughout this paper, we
assume a stringX[1..n] is a sequence of |X| symbols over
the DNA alphabet Σ = A,C,G,T and σ = |Σ| = 4. The
empty string is denoted ϵ and |ϵ| = 0. The substring
of X starting at symbol i and ending at symbol j is
denoted X[i..j]. A prefix is a substring starting at
position 1 and a suffix is a substring ending at position
n. The colexicographic order of two strings corresponds
to the lexicographic order of their reverse strings. We
define a k-mer as a (sub)string of length k, and the set
of distinct k-mers occurring in a string X is referred to
as the k-spectrum of X.

Definition 2.1. (k-Spectrum) The k-spectrum of a
string X, denoted with Sk(X), is the set of all distinct
k-mers {X[i..i + k − 1] | i = 1, . . . , |X| − k + 1}.
The k-spectrum Sk(X1, . . . , Xm) of a set of m strings
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X1, . . . , Xm is the union
⋃m

i=1 Sk(Xi).

The following definition enables us to search a k-
spectrum with the SBWT.

Definition 2.2. (Padded k-Spectrum) Let R =
Sk(X1, . . . , Xm) be the k-spectrum of the set of strings
X1, . . . , Xm, with alphabet Σ, and let R′ ⊆ R be the
set of k-mers Y such that Y [1..k − 1] is not a suffix
of any k-mer in R. The padded k-spectrum is the set
S+
k (X1, . . . , Xm) = R ∪ {$k} ∪

⋃
Y ∈R′{$k−iY [1..i] | i =

1, . . . , k − 1}, where $ is a special character that is not
found in the alphabet and is smaller than all characters
of the alphabet.

For example, if X1 = AGTC, X2 = GAGT and
k = 3, then S3(X1, X2) = {AGT,GTC,GAG} and
S+
3 (X1, X2) = {AGT,GTC,GAG, $$$, $$G, $GA}.

Spectral Burrows-Wheeler transform (SBWT)
We can now define the Spectral Burrows-Wheeler trans-
form. This definition corresponds to the multi-SBWT
definition of Alanko et al. [4].

Definition 2.3. (Spectral Burrows-Wheeler Trans-
form (SBWT)) Let R+ be a padded k-spectrum and
let X1, . . . , X|R| be the colexicographically sorted
elements of R+. The SBWT is the sequence of sets
of characters A1, . . . , A|R| with Ai ⊆ Σ such that
Ai = ∅ if i > 1 and Xi[2..k] = Xi−1[2..k], otherwise
Ai = {c ∈ Σ | Xi[2..k]c ∈ R+}.

For example, the SBWT of {AGTC, GAGT, AAGT}, with
k = 3, is: {A,G},{A},{G},{G},{},{A},{T},{},{C} (see
also Figure 2).

In this paper the primary operation we aim to
support is the k-mer lookup query, defined as follows.

Definition 2.4. (k-mer lookup query) Given an input
a string S of length k, a k-mer lookup query returns the
colexicographic rank of S in the underlying spectrum of
the SBWT, or ⊥ if the string is not in the spectrum.

We can think of the SBWT as encoding the set R+ of k-
mers as a colexicographically sorted list. In the context
of k-mer lookup, the SBWT allows us to navigate that
ordered list via the operation ExtendRight, defined as
follows.

Definition 2.5. (ExtendRight) Let [s, e]α be the colex-
icographic interval of string α, where s and e are re-
spectively the colexicographic ranks of the smallest and
largest k-mer in the SBWT suffixed by the substring α.
ExtendRight([s, e]α, c) denotes the right extension of the
interval [s, e]α with a character c ∈ Σ. This outputs the
interval [s′, e′]αc, or ⊥ if no such interval exists.

ExtendRight can be answered in O(1) time using two
subset rank operations on the SBWT. We first define
the rank operation.

Let X be a bit string (or bit vector) of length n, for
every index i ≤ n and x ∈ {0, 1}, rankx(i) is equal to
the number of x’s among the first i bits of X.

Definition 2.6. (Subset rank query) Let X1, . . . , Xn

be a sequence of subsets of characters from an alphabet
Σ. A subset rank query takes as input an index i and a
character c ∈ Σ, and returns the number of subsets Xj

with j ≤ i such that c ∈ Xj .

With this, ExtendRight([s, e]α, c) can be computed
using the formulas s′ = 1+C[c]+subsetrankc(s−1)+1
and e′ = 1+C[c] + subsetrankc(e) [4], where C[c] is the
number of occurrences of characters smaller than c in
the SBWT sequence. In our running example C[A] = 0,
C[C] = 3, C[G] = 4 and C[T] = 7.

The subset sequence of the SBWT can be repre-
sented in many ways to support subset rank queries
[3, 4]. In this paper, we focus on the matrix representa-
tion (Figure 2) and the split representation (Figure 1),
both of which sit on the time–space Pareto curve [4]:
matrix uses ∼5 bits per k-mer and is the fastest SBWT
index we know of, while split uses around ∼2.5 bits per
k-mer and is 3-4 times slower than matrix.

Definition 2.7. (Plain Matrix representation) The
plain matrix representation of the SBWT sequence is a
binary matrix M with σ rows and n columns, such that
the value of M [i][j] is set to 1 iff subset Xj includes the
ith character in the alphabet.

The rows of M are indexed for constant time rank
queries [29] (we use the implementation from [18]). The
subset rank query for the i-th character of the alphabet
up to index j is answered in constant time with a single
rank query on row M [i] up to index j, rankM [i](j).

The so-called split representation is a modification
of the plain matrix representation aimed at exploiting
the property that many of the SBWT subsets are
singleton because the total number of elements in the
sets is one less than the number of subsets.

Definition 2.8. (Split representation) Let M− be the
submatrix of matrix M , in the plain matrix represen-
tation, that contains only the columns of M with only
a single 1-bit set, and let M+ be the submatrix of M
containing the remaining columns. Let B be a bit vec-
tor of length n, marking with 1-bits the columns of M
that are in M+. M− is replaced by a string W which
is the concatenation of the characters corresponding to
the marked bits. The split representation of the SBWT
consists of W,M+ and B, and rank-support structures.
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Figure 1: The Split representation of the SBWT of {AGTC, GAGT, AAGT} with k = 3. The index consists of
only B, M+ and W .
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Figure 2: The Plain Matrix representation of the SBWT
of {AGTC, GAGT, AAGT} with k = 3.

Every row in M+ is indexed like in the plain matrix
representation, just like B, and W is indexed as a
wavelet tree. In this paper in particular we will use a
split representation in which the bit vector B is stored
compressed in the Elias-Fano data structure [30, 27].

3 Batched k-mer lookup queries

A batched k-mer lookup algorithm takes as input a set
of b patterns, each of length k. The standard way to
process a batch, which we call horizontal search is to
iterate over the patterns and process each pattern fully
before moving to the next. See Algorithm 1.

The algorithm involves two nested loops. The
outer loop simply iterates through the patterns. The
inner loop performs a k-mer lookup on the current
pattern. Processing of a pattern involves iterating over
its symbols from left to right and issuing up to 2k
subset rank queries (i.e., k ExtendRight operations) on
the SBWT sequence. The invariant maintained by
the inner loop—which we do not prove here—is that
at the end of the ith iteration, after processing prefix
P [1..i] of the pattern, the interval [s, e] corresponds to
the colexicographical interval of the k-mer spectrum

Algorithm 1 The horizontal (i.e. naive) SBWT batch
search algorithm for a set of b patterns.
Input: b patterns, each of length k.
Output: The colexicographic rank of each pattern
found in the underlying spectrum of the SBWT, or 0
if the pattern is not in the spectrum.

function HorizontalSearch(B[1, b][1, k])
1: results→ array of size b initialized to 0
2: for i = 1, . . . , b do
3: P ← B[i]
4: [s, e]← [1, n]
5: for j = 1, . . . , k do
6: c← P [j]
7: s← 1 + C[c] + subsetrankc(s− 1) + 1
8: e← 1 + C[c] + subsetrankc(e)
9: if e < s then

10: s→ 0
11: break
12: results[i]← s

13: output results

containing k-mers having P [1..i] as a suffix.2 In general,
the colexicographical intervals of P [1..i] and P [1..i+ 1]
can be in very different parts of colexicographic space,
and so accesses to the SBWT sequence (and data
structures built on it) when answering subset rank
queries have poor locality of memory reference, as
Figure 3 left illustrates. Each interval in the figure
corresponds to an (s, e) pair in one iteration of the
inner loop in the pseudocode. As the prefix processed
increases, the interval tends to become narrower and

2The inner loop can exit early (i.e. before processing all k

symbols of the k-mer) if e > s, in which case the k-mer does not
exist in the spectrum.
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only one cache miss occurs (for the subset rank query
at s), but early rounds of the algorithm cause two cache
misses, one each for the subset rank queries at s and e.

3.1 Presorting batches An intuitive and straight-
forward band-aid for the unattractive memory access
behaviour described above is to sort the patterns in
the batch into lexicographical order before starting the
outer loop. The philosophy is that if patterns are sorted
in lexicographical order, then, in a large batch, adjacent
patterns will share long common prefixes. Thus, some
of the colexicographical intervals accessed by the query
algorithm will be shared and so may already reside in
cache (from the processing of the previous pattern)—
the effect, in other words, is to increase the temporal
locality of memory accesses. The price, of course, is
the cost of sorting, which may be non-trivial for a large
batch of k-mers.

3.2 Vertical batch search Algorithm 2 lists an
alternative SBWT search algorithm—vertical search.
Unlike in horizontal search, each round of the outer
loop in vertical search progresses the search for all the
patterns in the batch by one character.

The operation of the algorithm proceeds in a man-
ner analogous to a radix sort of the patterns in the
batch. We maintain σ queues, Qc, one for each char-
acter c in the alphabet. Qc is initialised to contain all
patterns starting with c along with, as satellite data, an
interval containing all k-mers in the padded k-spectrum
that end with c. As the algorithm proceeds, these inter-
vals are maintained via right extensions (implemented
as two subset rank queries) using the next character of
the corresponding pattern, so that at the end of round i,
queue Qc contains all the patterns P that have P [i] = c
along with the colex interval in the SBWT containing all
k-mers having P [1..i] as a suffix. Critically, as we prove
below, intervals in each queue are in non-decreasing or-
der. Thus, the rank queries issued to update intervals
from one round to the next are issued in a cache-friendly
pattern across the SBWT and its rank structures.

In a final step we output the position in the SBWT
of found patterns (their colex rank) in their original
order, or 0 if the pattern is not found.

3.2.1 Memory access pattern We now prove that
in each round of vertical batch search, the intervals
come in non-decreasing order. This is the basis for the
efficient cache behaviour of the algorithm. An interval
[s1, e1] is considered smaller than [s2, e2] iff e1 < s2.

Lemma 1. In a given round i of the for-loop on line 5 of
Algorithm 2, the intervals [s, e] popped from the queues
are in non-decreasing order.

Algorithm 2 The vertical SBWT batch search algo-
rithm for a batch of b patterns, each of length k.

function VerticalSearch(B[1, b][1, k])
1: results→ array of size b initialized to 0
2: for j = 1, . . . , b do
3: P ← B[j] ▷ j = k-mer id

4: QP [1].append(C[P [1]], C[P [1] + 1], P, j) a

5: for i = 2, . . . , k do
6: for each c ∈ Σ in order do ▷ Σ = A, C, G, T

7: while Qc ̸= ∅ do
8: [s, e, P, j]← Qc.pop()
9: s← 1+C[P [i]]+subsetrankP [i](s−1)+1

10: e← 1 + C[P [i]] + subsetrankP [i](e)
11: if e ≥ s then ▷ symbols left to match

12: Q′
P [i].append(s, e, P, j)

13: for each c ∈ Σ do
14: swap(Qc, Q

′
c)

15: for each c ∈ Σ do
16: while Qc ̸= ∅ do
17: [s, e, P, j]← Qc.pop()
18: results[j] = s

19: output results

aC[σ + 1] = n, number of k-mers in the extended k-spectrum.

Proof. Every colexicographic interval in Qc corresponds
to a pattern ending in character c, so therefore for two
symbols c1 < c2, all intervals in Qc1 are smaller than all
intervals in Qc2 . The queues are processed in increasing
order of c, so it remains to show that the intervals inside
each individual queue are in sorted order.

We proceed by induction. On the first round, the
property holds since all intervals in each individual
queue are equal. Assume now that this property holds
at round i − 1. Consider the subsequence of intervals
popped in round i − 1 that extend successfully with a
fixed character c. The queue Qc in round i contains
the extensions from these intervals with c, in the order
of the subsequence. Take any two intervals [s1, e1]
and [s2, e2] that are consecutive in this subsequence
in round i − 1. By the induction assumption, we
have either [s1, e1] = [s2, e2], or e1 < s2. In the
former case, the extended intervals will be the same,
and the non-decreasing order is maintained for the next
round. In the latter case, since e1 < s2, we have
subsetrankc(e1) < subsetrankc(s2 − 1) + 1, and the
order is maintained.

3.3 Resolving rank queries via scanning As
Lemma 1 establishes, in a given round of vertical
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Figure 3: The intervals corresponding to pairs of SBWT subset rank queries issued in horizontal (left) and vertical
(right) SBWT batch search for the patterns TAC, ATA, GCA, TAG. The middle figure shows the order of the query
intervals if the patterns in the batch are first sorted. Numbers next to each interval indicate the order in which
the algorithms resolve them. A similar illustration derived from searching for a larger batch of patterns over
larger data set in each mode can be seen in Figure 4.

search, intervals are processed in non-decreasing order.
In particular, for two subsequent intervals [sj , ej ] and
[sj+1, ej+1], either the intervals are equal, or sj+1 > ej .
In the first case, if the rank queries issued on the two
intervals are for the same symbol c, once the answer is
known for [sj , ej ], no further computation is needed to
resolve [sj+1, ej+1]. In the second case, again assuming
the same symbol c, the answer for rank(sj+1, c) is equal
to rank(ej , c) plus the number of occurrences of c in the
SBWT sequence between ej and sj+1.

This suggests that, for a big enough batch, in
which intervals are well spread over the colexicograph-
ical space of the k-spectrum encoded by the SBWT, it
may be preferable to simply scan the SBWT sequence,
maintaining a cumulative sum of each symbol encoun-
tered up to the current scan position—rather than an-
swering queries via rank structures built in preprocess-
ing. The aim is to both save space (fast rank support
structures incur 10-25% overhead) and reduce computa-
tion (nearby rank queries perform the same arithmetic
within the rank structure). The precise details of the
scan depend, of course, on the SBWT encoding used.
In the case of Plain Matrix, a pointer into each bitvec-
tor is maintained. For Split pointers into B, M+, and
W are required.

4 Batches of overlapping k-mers

In many genomics applications, the k-mers to be
searched for lie within longer strings, and so overlap
each other. For example, we may be presented with
the string P = CAGCATAC and asked to query its con-
stituent 3-mers, CAG, AGC, GCA, and so on, each of

which overlap by two symbols. In a typical scenario
we are given a large set length-100 strings, called reads,
and are asked to query for all the 30-mers that they
contain. One would like to exploit the clear relatedness
(i.e. overlap) of the k-mers within each read to reduce
computation. We refer to this as a streaming query.

4.1 Streaming horizontal search The approach
to streaming search taken by the SBWT-based k-mer
lookup tool Themisto [5] is to store a bit vector of
length m that allows us to go from the index of a k-mer
x in the SBWT to the indices of the range of k-mers
that have x[2..k] as a suffix, and then execute one more
iteration of the inner loop in Algorithm 1 from this range
with the next character in the query. The bit vector
marks the first set of the SBWT and all sets where
the suffix of length k − 1 of the corresponding k-mer
is different from the suffix of the colex previous k-mer.
Now, if we are at index i corresponding to k-mer x, the
range of (k−1)-mer x[2..k] is [pred(B, i), succ(B, i)−1],
where pred(B, i) and succ(B,i) are the indices of the
previous and next 1-bits respectively in B from index
i (if B[i] = 1, then pred(B, i) = succ(B, i) = i).
Operations pred and succ are efficiently implemented
as a scan of B in either direction from i because the gap
between consecutive 1-bits in B can not be larger than
|Σ| + 1 (the maximum number of distinct k-mers that
have the same suffix of length k − 1).

We now describe a generalization of the bit vector
approach that instead makes use of the Longest Com-
mon Suffix (LCS) array of the SBWT, defined formally
as follows.
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Definition 4.1. (Longest common suffix array, LCS
array) Let R+ = {X1, . . . , Xm} be a set of k-mers
encoded in the padded k-spectrum of an SBWT, such
thatXi is the i-th element in colexicographic order. The
LCS array is an array of length m such that LCS[1] = 0
and for any index i > 1, the value of LCS[i] is the length
of the longest common suffix of Xi and Xi−1.

The LCS array can be constructed from the SBWT in
O(n) time [1]. In the definition above, we consider the
empty string as a valid common suffix of any two k-mers.
Therefore the longest common suffix is well-defined for
any pair of k-mers.

In addition to ExtendRight, the LCS allows us
to navigate colexicographically-ordered padded k-mer
spectrum also with what we call ContractLeft.

Definition 4.2. (ContractLeft) Let [s, e]α be the
colexicographic interval of string α, where s and e are re-
spectively the colexicographic ranks of the smallest and
largest k-mer in the SBWT suffixed by the substring α.
ContractLeft([s, e]α, ℓ) for |α| > ℓ returns the interval
[s′, e′]α[ℓ+1..|α|].

ContractLeft can be answered with a previous-smaller-
value (PSV) query, for s, by setting s′ to be the
largest position smaller or equal to s in LCS, such
that LCS[s′] < |α| − 1, or to 1 if no such position
exists. Symmetrically, e′ can be found with a next-
smaller-value (NSV) query for e. There are data
structures capable of efficiently answering both PSV
and NSV queries in constant time with minimal space
overhead [14, 10]. In practice however, we implement
left contractions by simply scanning the LCS array left
from s and right from e. Since with biological data, in
our algorithms, the vast majority of scans tend to be
very short [2], this solution has proven to work well in
practice. The scanning approach is also memory-local
and is thus likely faster than more sophisticated data
structures that have worst-case guarantees.

This combination of data structures was recently
used for computing k-mer signatures called finimiz-
ers [2]. We apply it here directly to k-mer lookup.

ExtendRight queries are here solved with 2 subset
rank queries on the SBWT as in section 3. Algorithm
3 lists pseudocode. Whenever a right extension fails,
we perform at least a left contraction before successfully
right extending again.

Theorem 4.1. Given constant-time ContractLeft and
ExtendRight queries on the padded k-spectrum R+,
Algorithm 3 solves k-mer lookup queries for query T
in time O(|T |).

Proof. The invariant maintained is that at the end of
iteration i, [s, e] is the interval of the longest suffix of

Algorithm 3 The SBWT streaming search algorithm
for a query T .
Input: A string T .
Output: The colexicographic rank of each k-mer of T
found in the underlying spectrum of the SBWT, or 0 if
the pattern is not in the spectrum.

1: results→ array of size |T | − k + 1 initialized to 0
2: [s, e]← [1, n]
3: d← 0 ▷ Length of the current match

4: for i = 1..|T | do
5: while d > 0 and ExtendRight([s, e],T [i]) = ∅ do
6: [s, e]← ContractLeft([s, e], 1)
7: d← d− 1

8: if ExtendRight([s, e], T [i]) ̸= ∅ then
9: [s, e]← ExtendRight([s, e], T [i])

10: d← min(k, d+ 1)

11: if i ≥ k and d = k then
12: results[i]← s

13: output results

T [1..i] that is suffix of at least one k-mer in the SBWT.
If at iteration i − 1 we have the interval of the longest
match ending at i−1, then at iteration i, after lines 5–7,
we have the interval of the longest match ending at i−1
that can be extended with T [i]. If the longest match
ending at i is nonempty, the right extension succeeds
and the invariant is maintained. The invariant holds
with an empty match as the interval is set to [1, n] after
the last ContractLeft. Time is linear in |T | as each query
position is subject to at most one successful ExtendRight
and ContractLeft.

An important implementation detail for Algorithm 3
is that when a right extension fails in the while loop,
we can store the ranks at the ends of the interval
and maintain the ranks while scanning backward and
forward during the left contraction. This way, we avoid
issuing rank queries again for the next attempted right
extension, and instead use the stored values. Likewise,
we can reuse stored rank values when we apply the
extension after the while loop.

4.2 Streaming vertical search A streaming verti-
cal k-mer lookup algorithm takes as input a set of n
query sequences of equal length m ≥ k, and looks up
the k-mers in a vertical left-to-right order. That is,
the algorithm first processes the first nucleotide of ev-
ery query, then the second nucleotide of every query,
and so on. In short, the algorithm runs the horizontal
streaming search algorithm described in Section 4.1 for
each query, but with reordered computation to improve
memory locality.
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In more detail, the algorithm is a modification of the
regular vertical search (Algorithm 2), with the change
that the algorithm runs for m ≥ k rounds, and when a
right extension fails, instead of giving up on the query,
we issue left contraction queries until the right extension
succeeds. With this, we maintain the invariant that
at the end of iteration i, we have the colexicographic
interval of the longest match ending at position i in
every query. Moreover, by keeping track of the current
match length in each query, we know whenever we
have a full k-mer match, and can report query answers
accordingly.

The items pushed to the work queues now contain
the full state of the horizontal streaming algorithm,
including the current colex interval, the match length,
the position in the query, the query string itself for
fast local access to the next character, and a pointer
to where to write the next query answer. As a small
but important implementation detail, we also include
a small local write buffer with each query and write
answers in batches of 8 to reduce cache misses.

Memory access pattern The memory access pattern
of streaming vertical search is slightly less predictable
than that of regular vertical search. Unlike in regular
vertical search, there is no longer a guarantee that
the intervals processed on each round come in non-
decreasing order. A weaker property holds instead, that
while two intervals may now nest, they cannot swap
places completely:

Lemma 2. On a given round i, if interval [s1, e1] is
popped before [s2, e2], then e2 ≥ s1.

Proof. Like in the proof of Lemma 1, it is enough to
show that the individual queues are sorted. We proceed
by induction on the round number i. The base case
holds since initially, the intervals in each individual
queue are equal. Assume now that the Lemma holds
at round i−1. Consider the subsequence Sc of intervals
popped in round i−1 that extend with a fixed character
c, possibly after some number of left contractions. The
queue Qc in round i contains the intervals after left
contracting and right extending each interval from Sc.
Take any two intervals [s1, e1] and [s2, e2] that are
consecutive in Sc and let [s′1, e

′
1] and [s′2, e

′
2] be the

intervals after the possible left contractions. A left
contraction moves start points to the left and end points
to the right, so we have e′2 ≥ e2 and s′1 ≤ s1, and
therefore by the induction assumption e′2 ≥ s′1. Let e′′2
and s′′1 be the end point and start point after the right
extension. We have e′′2 = 1 + C[c] + subsetrankc(e

′
2) ≥

1+C[c]+subsetrankc(s
′
1−1)+1 = s′′1 , the order property

in the Lemma continues to hold.
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Figure 4: Comparing subset rank query intervals across
horizontal, horizontal after sorting, and vertical batch
querying over 100 positive queries on the E. coli data.
Lines indicate query intervals (and points illustrate
small intervals that would otherwise be imperceivable).

5 Experiments

5.1 Experimental Machine We used a Linux
server with two Intel Xeon Gold 6144 CPUs (3.5GHz)
and 512 GiB of memory. Only a single thread of ex-
ecution was used. The compiler was g++ version 8.4.0
(flags -O3 -march=native). Runtimes were measured
with calls to the high-resolution clock (std::chrono).
Reported times do not include time for I/O.

5.2 Datasets We ran experiments on three data sets
representing different types of sequencing data typical of
genomics applications. The unique 31-mer counts below
include both DNA strands.

1. E. coli A pangenome of 3682 E. coli genomes. 3

The collection includes 745,409 sequences with a
total length of 18,957,578,183 characters, resulting
in 341,297,220 unique 31-mers.

2. Metagenome A set of 17,336,887 Illumina HiSeq
reads of length 502 sampled from the human gut
(SRA id ERR5035349) [20] of length 8,703,117,274
characters (5,523,047,870 distinct 31-mers).

3The collection is available at zenodo.org/record/6577997.
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3. Blackwell A collection of 639,981 high-quality
genomes from 661k bacterial genomes dataset of
Blackwell et al. [7]. It has 2,477,615,026,052 char-
acters and 71 billion unique 31-mers.

5.3 Queries We ran our experiments with k = 31,
which represents a typical scenario in genomics applica-
tions. We generated three types of query sets of single
k-mers: Negative queries, which are randomly generated
sequences of length k, highly unlikely to occur in the
data; Positive queries, generated by randomly sampling
k-mers from each dataset; Mixed queries, half randomly
generated and half sampled k-mers, randomly ordered.
Our query sets contain 1, 10, and 100 million queries,
as well as 1 billion queries.

To test streaming search we used reads of length
L = 200. We generated two types of query sets:
Negative reads, which are randomly generated sequences
of length L, in which each k-mer is highly unlikely
to occur in the data; and Positive reads, generated
by randomly sampling strings of length L from each
dataset. Our sets contain 1, 10, and 100 million reads.

5.4 Indexes For each data set, we built the two
SBWT representations from the study on SBWT in-
dexing by Alanko et al. [4]: Plain-Matrix (PM) and Elias-
Fano Split (EFS). We constructed these indexes setting
k = 31 and enabling reverse complements.

We also use SSHash [31], a k-mer lookup method
based on minimal perfect hashing, as a performance
baseline. It is the fastest compact k-mer lookup method
we know of. SSHash was run on Eulertigs [32]—
minimal a set of strings with the same k-mers as the
input strings—built with GGCAT [11]. We set m =
16, 17, 19 on the three datasets, respectively, following
the author’s advice to use m = ⌈log4(N)⌉+1, where N
is the number of symbols in the input to SSHash.

6 Results

6.1 Querying Individual k-mers Our first series of
experiments focus on the task of processing a large batch
of individual query k-mers. In particular, we measure
the per-query latency (i.e. runtime) of processing the
entire batch of b patterns (a b× k matrix of characters)
over a series of different batches and indexes.

Before we discuss the results, we briefly re-iterate
the methods that are under consideration. Horizontal
processing uses the SBWT in a “typical” manner,
processing each pattern of length k in the original batch
order; Sort + Horizontal is the same, but the batch is first
sorted lexicographically (via radix sort) before search

Horizontal VerticalSort + Horizontal Vertical + Scan

Figure 5: Query time (µsec/query) of batch processing
strategies as a function of the increasing batch size,
on both the Plain-Matrix (top) and EF-Split (bottom)
indexes, two datasets, and four sets of positive 31-mers.

commences;4Vertical represents the proposed method in
Algorithm 2; finally, SSHash, is our hashing baseline.
For Plain Matrix, we also measure the cost of vertical
processing with the additional scanning optimization
described in Section 3.3, denoted Vertical + Scan.

Table 1 compares the average latency (per k-mer)
across three batches of 109 individual k-mers. Interest-
ingly, sorting the batch does yield benefits to all query
types and indexes; we observed sorting to cost around
200 nanoseconds per k-mer, a modest pre-processing
cost which is, in turn, recouped via faster rank queries.
However, vertical batch processing clearly outperforms
horizontal processing, even if the batch is sorted (with
the exception of negative queries on the E. coli collec-
tion). We also see that the scanning optimization to
vertical search is helpful on the smaller indexes, but is
less effective on the big Blackwell dataset, where the
distance between rank queries—and so the length of
scans—can become very large.

Figure 4 visually supports the observed speedups—
reordering the computation with sorting clearly im-
proves the access coherence of the rank queries; but
further coherence is achieved through the vertical batch
scheme. Figure 5 shows how the latency changes with
increasing batch size b. As expected, larger batches re-
sult in faster querying, except for with standard hor-
izontal processing. Nonetheless, Vertical processing is
always significantly faster than Sort + Horizontal in all

4In both Horizontal and Sort + Horizontal, we bootstrap the
search by precalculating the colex intervals of all 8-mers and start

the searches from there.
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Approach
E. coli Metagenome Blackwell

POS MIX NEG POS MIX NEG POS MIX NEG

SSHash 1.70 1.70 1.72 1.96 2.04 2.10 3.15 3.44 3.28
P
M

Horizontal 2.59 1.70 0.79 3.07 2.07 1.09 5.91 4.07 2.78
Sort + Horizontal 0.95 0.82 0.42 1.89 1.34 0.57 3.36 2.69 1.41

Vertical 0.69 0.75 0.49 0.75 0.69 0.48 0.97 0.89 0.72
Vertical + Scan 0.48 0.50 0.33 0.64 0.51 0.33 0.99 1.00 0.79

E
F
S

Horizontal 10.52 6.92 3.22 13.61 9.42 5.21 22.22 15.74 11.87
Sort + Horizontal 3.34 2.60 0.85 7.18 4.73 1.34 11.99 8.66 3.94

Vertical 2.03 1.60 1.02 2.26 1.78 1.14 2.82 2.09 1.73

Table 1: Query time (µsec/query) of batch processing strategies on both the Plain-Matrix (top) and EF-Split
(bottom) indexes, three datasets, and three types of query batches. All batches contain 109 individual 31-mers.

Approach
E. coli Metagenome Blackwell

POS NEG POS NEG POS NEG

L
=

2
0
0 SSHash 0.32 0.52 0.25 0.55 0.38 0.80

Horizontal-S 0.15 0.41 0.17 0.59 0.26 1.12
Horizontal-S + LCS 0.14 0.26 0.17 0.30 0.37 0.98

Vertical-S + LCS 0.12 0.20 0.13 0.22 0.17 0.82

Table 2: Query time (µsec/query) of various streaming batch processing strategies on the Plain-Matrix index,
three datasets, and two types of query batches. Positive batches contain 108 reads, and negative batches contain
106 reads. Reads are of length L = 200. Results are consistent for smaller read sets.

but one run (the smallest batch on the largest SBWT
with the EF Split index). Here again we can see that
the efficacy of scanning (the orange line in the figure)
depends critically on the size of the query batch rela-
tive to the index size. When batch size is small relative
to index size, the resulting large scans are slower than
using an index to support rank.

Table 1 shows significant improvements as measured
on large batches containing 109 k-mers. EF-Split shows
the most dramatic improvement in the shift from hor-
izontal to vertical processing, with an 8× speed up for
positive queries on the Blackwell dataset. Plain-Matrix
is always clearly faster, but uses around 40% more mem-
ory than EF-Split. For brevity, detailed space usage
numbers are not shown, but in summary: Plain-Matrix
indexes are 1.22−1.45× the size of SSHash; and EF-Split
indexes are smaller, 0.80− 1.00× the size of SSHash.

6.2 Streaming search In the second set of experi-
ments, queries are no longer a batch of single k-mers,
but a batch of reads formed by overlapping k-mers. As
before we measure per-k-mer latency of processing the
set of reads over different batches and search methods.

We compare four methods: Horizontal-S denotes
the standard processing reads using the SBWT with
streaming support, described in [4] and at the start of

Section 4.1; Horizontal-S + LCS represents the method
proposed in Algorithm 3; Vertical-S + LCS combines the
second method listed here with vertical batch search, as
described in Section 4.2; and finally SSHash.

Results are presented for the Plain-Matrix represen-
tation. Table 2 offers a comparison of the average la-
tency per k-mer across batches of 100 million positive
and 1 million negative reads. Vertical-S + LCS appears
to be consistently faster than the other methods and is
roughly 2.5× faster than SSHash in these experiments.

Figure 6 shows the sortedness of intervals during
a run of Vertical-S + LCS. We see that even though
the memory access pattern guarantee is weaker than in
Vertical, the sortedness of intervals does not deteriorate
anymore after approximately 20 rounds, and in any case
approximately 95% or more of the start points and end
points still come in sorted order.

7 Conclusions and Future Work

Remarkably, despite 25 years of research on BWT-based
text indexing, this is the first focused study examining
batched pattern matching with those indexes.

We have described vertical batch processing, a
careful reorganization of computation that drastically
improves locality of memory reference compared to
processing queries independently.
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Figure 6: The sortedness of start and end points of
intervals during streaming vertical search against the
E. coli dataset. The sortedness of start points (or end
points) during a round is defined as the fraction of
consecutive start (or end) points popped from the queue
that are in sorted order. Three read sets were queried:
positive (red), negative (orange), and mixed (blue). The
mixed dataset is the metagenomic read dataset, with a
positivity rate of 0.54%.

We have also shown that in the scenario that the
patterns in a batch come overlapping one another inside
longer strings—an important special case in genomics
applications—streaming search, a heuristic used in some
practical tools, can be generalized and combined with
vertical search to achieve even faster search times.

An important caveat of the batch processing frame-
work is the increased memory usage required. Assuming
k-mers are stored as bit-packed sequences, each k-mer
may occupy 8 bytes (with k = 31). Then, a batch of
109 31-mers would require about 7.5GiB, which must be
resident in main memory during querying, not including
other support structures (such as a vector of answers).
Our experiments show that using memory this way is
worthwhile if increased throughput is the goal.

Our focus throughout this article has been on the
SBWT and k-mer lookup. A direction for further
research is to translate our techniques onto indexes
based on the regular BWT that support search for
patterns of variable length. Our successful combination
of vertical and streaming search suggests this is possible.
In the context of the SBWT, experiments on different
values of k (rather than the single common value we
have used in our experiments) would also be valuable.

With memory locality now vastly improved, it
seems natural to explore parallelism in the context
of batched search to further improve throughput. In
the same vein, GPUs represent another interesting
opportunity, where batch processing seems necessary to
exploit massive parallelism present on those devices.

Acknowledgments We thank Brendan Gregg, Luke
Gallagher, David Gwynne, and Alistair Moffat for help-
ful conversations, and Giulio Pibiri, whose careful read-
ing materially improved our first manuscript. The third
author was supported by the Google Research Scholar
program. The code to reproduce the experiments
is available at: https://github.com/JMMackenzie/

BatchSBWT/

References

[1] Jarno N. Alanko, Elena Biagi, and Simon J. Puglisi.
Longest common prefix arrays for succinct k-spectra.
In Proc. SPIRE, LNCS 14240, pages 1–13. Springer,
2023.

[2] Jarno N. Alanko, Elena Biagi, and Simon J. Puglisi.
Finimizers: Variable-length bounded-frequency mini-
mizers for k-mer sets. BioRχiv, 02 2024.

[3] Jarno N. Alanko, Elena Biagi, Simon J. Puglisi, and
Jaakko Vuohtoniemi. Subset wavelet trees. In Proc.
of the 21st International Symposium on Experimental
Algorithms (SEA), LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023.

[4] Jarno N. Alanko, Simon J. Puglisi, and Jaakko Vuo-
htoniemi. Small searchable k-spectra via subset rank
queries on the spectral Burrows-Wheeler transform.
In Proc. of SIAM Conference on Applied and Compu-
tational Discrete Algorithms (ACDA), pages 225–236.
Society for Industrial and Applied Mathematics, 2023.

[5] Jarno N. Alanko, Jaakko Vuohtoniemi, Tommi Mäklin,
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