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ABSTRACT

We explore the relationship between expected reciprocal rank (ERR)
and the metrics that are available under the C/W/L framework. On
the surface, it appears that the user browsing model associated with
ERR can be directly injected into a C/W/L arrangement, to produce
system measurements equivalent to those generated from ERR.
That assumption is now known to be invalid, and demonstration of
the impossibility of ERR being described via C/W/L choices forms
the first part of our work. Given that ERR cannot be accommodated
within the C/W/L framework, we then explore the extent to which
practical use of ERR correlates with metrics that do fit within the
C/W/L user browsing model. In this part of the investigation we
present a range of shallow-evaluation C/W/L variants that have
very high correlation with ERR when compared in experiments
involving a large number of TREC runs. That is, while ERR itself
is not a C/W/L metric, there are other weighted-precision compu-
tations that fit with the user model assumed by C/W/L, and yield
system comparisons almost indistinguishable from those generated
via the use of ERR.
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1 INTRODUCTION

Over the years numerous information retrieval (IR) evaluation met-
rics have been proposed, the goal being to measure the effectiveness
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of IR system result rankings [20]. During this time many commonal-
ities between the metrics have been identified, with the majority cal-
culating some variant of expected utility (also referred to as expected
rate of gain in some of the associated literature) via a weighted-
precision based measurement derived from a user browsing model
[5, 17]. Most recently, the C/W/L framework has been proposed
as a theoretically principled approach to describing and designing
IR metrics, with new and existing metrics able to be encoded by
defining a function describing the user population’s conditional
continuation probability [18, 19]. Under the C/W/L framework (pro-
nounced “cool”) it is possible to describe a range of both traditional
and more novel metrics, including precision (P@k); average preci-
sion (AP); reciprocal rank (RR); discounted cumulative gain (DCG)
[13]; rank-biased precision (RBP) [17]; time-biased gain (TBG) [22];
INSQ and INST [18, 19]; bejeweled player model (BPM) [28]; infor-
mation foraging theory (IFT) [1]; and data driven metrics (DDM) [3].

The C/W/L framework enables the measurement of expected
utility (as noted, also referred to as the expected rate of gain) and
has a number of advantages:

(i) measurements are in defined units of “expected gain accrued
per document inspected” and can be compared between metrics,
meaning that (for example) a metric score computed via RBP is
directly comparable to the scores from TBG, BPM, INST, IFT,
and so on;

(ii) the C/W/L framework enables computation of a range of further
values, including expected total utility (referred to in some of
the literature as expected total gain), the expected total cost, and
the expected search depth;

(iii) some of those attributes of the user’s modeled activity when
perusing the document ranking can be compared directly to
observational studies (for example, items viewed [25, 29], or
time spent and last item examined [1, 3]), allowing parameters
to be fitted to different types of search behavior, and hence
more specific measurement to be undertaken;

(iv) new metrics can be encoded by instantiating an appropriate

user model, and then specifying how to compute the conditional

continuation probability function implied by the model; and
there is a natural extension that incorporates search sessions,
in which multiple queries are issued and the user’s overall goal

is used as part of the user browsing model [26, 27].

When taken together, these five attributes mean the C/W/L frame-
work provides an extensible and versatile basis for measuring differ-
ent aspects of retrieval performance under different user modeling
assumptions, with the flexibility provided by point (iv) perhaps of
greatest importance.

While the C/W/L framework is both appealing and flexible, it is
by no means universal, and a range of other models have emerged
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[11, 12]. One popular metric often used when measuring web search
effectiveness — expected reciprocal rank (ERR) — offers a fundamen-
tally different user browsing model and measurement of a ranking,
computing the expected inverse of the effort to find a single relevant
item [6]. Initially, it was thought that ERR could be seamlessly fitted
into the C/W/L framework (for example, see the claim made by Mof-
fat et al. [19, top of page 15]). We carefully consider that question
in the current work, and as a first result, provide a demonstration
that in fact ERR cannot be described as a C/W/L metric.

Given that context, our second objective is to explore the extent
to which it is possible to construct a C/W/L-compliant and ERR-
inspired metric that shares its evaluation properties with ERR, but
also inherits all of the other C/W/L benefits listed above. As we
show below, we can describe C/W/L metrics that closely mirror the
retrieval evaluations and system comparisons attained by ERR.

Note that we do not in any way suggest that ERR is redundant. Its
user model is simply based on different user browsing assumptions,
and hence it provides an alternative to C/W/L-based metrics. But
in terms of practical use, it appears that the impact of the different
browsing model can be minimized, a point that might be of interest
to theoreticians and practitioners alike.

2 ERR AND OTHER METRICS

Information retrieval has a long tradition of practical experimenta-
tion, see, for example, Sanderson [20] for an overview. A key part
of that endeavor has been the development of effectiveness metrics,
computations that take an ordered sequence of documents as re-
turned by a retrieval system (a run), and a set of determinations
as to the relevance of each of the possible documents that might
appear in the run (a set of grels), and combine them to generate
various numeric scores that summarize the merits of that run. For
any given system, the run scores can then be aggregated over a
fixed set of queries (or topics); and sets of systems can then be
compared by mean score; or via the computation of a risk-adjusted
mean score [4, 8, 10]; or via application of an appropriate statistical
test; or by a combination of all three.

User Browsing Models. The last decade has seen several propos-
als for new metrics. One that has received a lot of use is expected
reciprocal rank (ERR) [6]. It was developed as a generalization of
the earlier reciprocal rank (RR) metric, in response to the emergence
of graded relevance judgments [13]; they, in turn, were a general-
ization of the previous predominantly binary judgments. Expected
reciprocal rank is intended to reflect the way that users approach
ranked document lists, and was one of two proposals that pioneered
an explicit focus on user browsing models, the second being the
rank-biased precision (RBP) metric of Moffat and Zobel [17].

In both RBP and ERR each user is presumed to commence at
the first document in the ranking, and after considering it in some
way, to either proceed to the second with some defined probability,
or to exit the run after only looking at the first document. More
generally, the fraction of users that reach the i th document in the
ranking are presumed to either abandon the run at that point, or to
continue to the i + 1 th document with some calculable probability.
These probabilistic sequential browsing models of user behavior
are also sometimes called cascade models [9].
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Figure 1: The user browsing model associated with ERR.

Chapelle et al. [6] define ERR as:

0 i—-1
Mg (1) =; %'g(l_rj) > (0

where r = (r;) is derived from the relevance categories with which
the documents in the run have been labeled (the qrels). For example,
one common way of converting categorical relevance labels g;
across G distinct classes (for example, g; € {0...(G — 1)} with
G = 4 and the four categories representing “not at all relevant”,
“somewhat relevant”, “relevant”, and “highly relevant” respectively)
to numeric gain values r; is via the gain mapping:

291 — 1
r,'=2G—_1. (2)

With this gain mapping, even maximally relevant documents (g; = 3
when G = 4) are treated as being sometimes not recognized as such
by the individual searchers, with the probability of that happening
set at 1 — 7/8 = 0.125; conversely, “somewhat” relevant documents
are regarded as being sufficiently useful that they satisfy some of
the individual searchers, also with probability 1/8 = 0.125. This
particular gain mapping also stipulates that users never deem any
of the “not at all relevant” documents to be acceptable.

In terms of modeled behavior, ERR supposes that each user ends
their inspection of the run as soon as they encounter a document
that they believe is relevant, with r; being the probability that the
user will regard the i th document in the ranking as fully satisfy-
ing their information requirement. This structure in illustrated in
Figure 1. Because the gain mapping depicted by Equation 2 never
allows r; = 1, a non-zero fraction of the user population is regarded
as examining the run indefinitely, which is why the summation
in Equation 1 must, in theory at least, run to infinity. In practice,
the summation is often truncated to some depth k. For example,
ERR@20 evaluates the summation across the first k = 20 terms, and
ignores any contribution from the remaining tail of the distribution.

More precisely, Equation 1 computes a weighted sum, over a
population of users and across all depths in the ranking, of the
probability of exiting at rank i with one unit of perceived gain,
in each case divided by the number of elements from the ranking
inspected by that user. That is, ERR is defined as the expected effort
in order to obtain one unit of (subjective) gain [6], and hence, like
the C/W/L family, ERR has units of “expected gain accrued per
document inspected”. The total gain that each user derives from
their search - or rather, their perceived (or deemed) gain - is always
exactly one unit of relevance. Finally, note that RR can be viewed
as the restriction of ERR to binary qrels — Equation 1 still exactly
describes the computation, but for RR there are only two possible
values, and r; must always be one of {0, 1}.
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Figure 2: The user browsing model associated with C/W/L metrics.
Adapted from similar diagrams by Moffat et al. [17, 18].

The C/W/L Framework. As noted above, one important way of
interpreting effectiveness metrics is through the lens of the corre-
sponding user browsing model, which represents how each indi-
vidual user, and hence a whole population of users, interacts with
the run [5, 6, 14, 17, 18, 28]. Moffat et al. [18, 19] formalized that
idea into a framework they call “C/W/L”, which provides a mathe-
matical foundation for effectiveness measurement. The next few
paragraphs summarize the main elements of their proposal.

Members of the C/W/L family are most intuitively defined via a
function C(i) (there are two others, W (i) and L(i), hence the name;
with the other two determined once any one of the three is defined)
which specifies the conditional probability of a user continuing
from the document at rank i to the document at rank i + 1. The
user’s propensity to continue may be based on any/all of i, the
depth in the ranking; r;, the gain associated with the i th document
in the ranking; the total gain accrued through until rank i; and the
user’s initial search goal, measured in units of “relevance” [18, 19].
Other factors known to the user at the time that they make that
i th decision to continue or stop can also be included if appropriate.

Figure 2 describes this user browsing model. Note the differ-
ences between it and the ERR model shown in Figure 1: in C/W/L
metrics, gain can be accumulated from every document observed,
rather than from only the last document observed; and r; is the
fractional gain accrued by viewing the i th document, rather than
the probability of that document being regarded as fully relevant.

The actual value of a C/W/L metric is computed as the inner
product of two vectors:

o the vector of per-document gains, r = (r;); and
e a vector of weights, (W (i)), where W (i) is the fraction of all
user attention that is paid to the document at rank i.

That is, the C/W/L metric value is computed as
(o]
M(r) = W) ri. 3)
i=1

The value of W (i) is derived from C(i) via an intermediate function
V (i), which records the fraction of the population of users that
view the document at rank i:

ifi=1

otherwise .
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Given the vector (V(i)), the value of

vt = i V(i)
i=1

is computed, the sum over all ranks i of the proportion of users that
view that i th document; and then
V(i)
V+
is used to generate the weight vector (W (i)). That is,

w(i) =

00 .
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It is important to note that if 3};2; r; is finite (that is, if there is a
finite number of documents judged relevant or partially relevant)
and V* is infinite (that is, the function C(i) is such that the sequence
of partial sums 23:1 V(j) does not approach a limiting value as i
increases) then the metric value will approach zero. In such a situa-
tion the user can only gain a finite total amount of relevance, but is
modeled (with some non-zero probability) as continuing to examine
documents indefinitely, making their expected utility (measured
in the desired units of “gain accrued per document inspected”)
approach zero.
As an example of a C/W/L metric, consider reciprocal rank (RR)
with binary qrels, that is, with r; € {0, 1}. It can be C/W/L-defined
via the conditional continuation function

Ces(1) = (1-ry). 5

Here the user is modeled as always proceeding to the next document
if r; = 0, and always stopping if that ith document is relevant.
Suppose that d is the shallowest rank at whichry = 1. Then V(i) = 1
for 1 < i < d and V(i) = 0 thereafter; and hence V* = d, and
W (i) = 1/d for 1 < i < d. The ERG (expected rate of gain) metric
M(r) associated with the ranking is then 1/d. Or, if there is no d
in the ranking for which r; = 1, the user is modeled as continuing
endlessly, and never exiting the ranking; the corresponding metric
score is zero. Hence, since RR can be completely described by a
C(+) function, it is a member of the C/W/L family.

ERR is Not C/W/L. Given the strong relationship between RR
and ERR, it is tempting to conclude that ERR must also be a C/W/L
metric, defined in exactly the same way, that is, via Equation 5.
Indeed, Moffat et al. [19] made exactly that claim, and only later
recognized its incorrectness!.

To demonstrate that ERR is not a C/W/L metric, consider the
gain vector r = (@, a,a,...), that is, every document in the run
provides exactly the same gain of 0 < a < 1. Because the C/W/L
weights W (i) must sum to 1.0, it is clear that every C/W/L metric
must give a score of « to the run described by r. No matter what
behavior the users exhibit, their expected rate of gain is always
exactly a per document inspected.

Now consider the value that arises for ERR (Equation 1). The
summation becomes

0 o i—1 =) o i—-1
1A ) o A
=1\ b= =2\ b=t

with the final inequality holding because 0 < & < 1. That is, for this
ranking there is no C(-) function which yields the same numeric

ISee https://people.eng.unimelb.edu.au/ammoffat/abstracts/mbst17acmtois-errata.pdf,
dated September 2019, and accessed May 2021 while preparing this work. That note
provides the argument that is presented here.
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score as Equation 1, and hence, by existence of a counter-example,
ERR is not a C/W/L metric.

3 SHALLOW ADAPTIVE C/W/L METRICS

Two immediate questions then arise:

(1) given that the function Cgs(i) = (1 — r;) (Equation 5) does not
correspond to ERR, then what are the properties of the metric
that it does instantiate; and

(2) does Equation 5, or some other C(i) function, provide a useful
C/W/L approximation of ERR, where “useful” and “approxima-
tion” need specification.

In this section we explore five ways in which an ERR-like metric
might be formulated within the C/W/L framework. The properties
of these five options are then compared in Section 4.

Option One. The first possibility for an “ERR-inspired” C/W/L
variant is to simply take the Cgs(-) function defined in Equation 5,
and use it to specify a metric.

However Cgs(+) has a problem: the sum V* does not have a finite
limit. In particular, if there is a tail in the ranking beyond some depth
d for which V(d) > 0and r; =0 for j > d, then V* = 32, V(i) =
oo is unbounded, because some non-zero fraction of the users are
modeled as examining every document in the collection. Those
users continue on patiently, viewing document after document,
depressing the “expected gain accrued per document inspected”
towards zero.

Moreover, the conditions required for this scenario (namely, that
V(d) > 0 and rj = 0 for j > d at some point d in the run) are
commonplace when graded judgments are being used. For example,
Section 2 noted (Equation 2) that one common way of converting
categorical relevance labels g; to gain values r; has r; < 7/8 and
hence C(i) > 1 — (7/8) = 0.125 at every depth i. That, in turn,
means that V(d) > 0 at the point d in the ranking of the last judged
document. In other words, regardless of the judged documents prior
to depth d, Equation 5 cannot guarantee bounded values for V*, and
hence all derived metric scores will tend to zero when computed to
depth infinity (Equation 3).

Option Two. It is also tempting to consider that:
i
Ce(i) = — (1 -1 6
e6 (1) i+1( ri) (6)

might provide a useful approximation to ERR, with V(i) explicitly
equated to the “effective discount” part of ERR [6] and incorporated
into the C(+) and hence V() functions via a telescoping product:

1 i-1
V(i) == —r).
W=-]]a-m ™
Jj=1
Unfortunately, this option is not suitable either, as the relationship:
k 1
> = ~Ink+0577
iz !

is well-known?, and means that the derived value V* corresponding
to Equation 7 is also non-convergent. That is, even though it grows
much more slowly than was the case with Equation 5, Equation 6
can also not be used as the basis for a (well-defined) C/W/L metric.

2See, for example, https://en.wikipedia.org/wiki/Euler-Mascheroni_constant.

Indeed, Equations 5 and 6 yield values for V* that are bounded
if and only if:
o the gain mapping in use allows r; = 1 when g; = G — 1; and
o there is a document in the ranking for which g; = G — 1, and
thus r; = 1.

In all other cases the C/W/L metric scores, computed to rank co
(Equation 4) must have zero as their limiting values, regardless of
the gain values of the documents prior to that limiting depth d that
marks the point beyond which no judgments are available.

Finally, note that non-convergence issues don’t arise with recip-
rocal rank (RR) and binary relevance judgments: the binary gain
mapping does allow r; = 1, and if there is no such document in the
ranking, the correct metric score is simply deemed to be zero. It is
the use of graded relevance judgments that means that ERR cannot
be a C/W/L metric.

Truncation at k. As is already done with other non-convergent
metrics — notably precision@k and DCG@k - one possible remedi-
ation is to evaluate the metric to a fixed depth, so that V* can be
bounded even when the ranking has r; = 0 for all depths i. For ex-
ample, Equation 5 can be readily modified so that no users proceed
beyond the k th document in the ranking:

(1-r;) wheni<k
0 wheni > k.

Ces(i) = { ®)

The corresponding browsing model has users “giving up” at depth k,
and is somewhat ad hoc, with k becoming a parameter that governs
the metric score and imposes a hard limit on evaluation depth. But
it is also true that pooled judgments are often generated to some
finite depth, and so evaluating rankings to that same depth might
be deemed to be a reasonable compromise.

Similarly, a cutoff can also be applied to Equation 6:

{ i-(1-r;)/(i+1) wheni<k
0

Ceo (i) = wheni > k.

©)
Option Three. Given that Equations 5 and 6 have limitations and
must be transformed into Equations 8 and 9 to be useful in the
C/W/L framework, are there any “infinite depth” ERR-inspired
formulations for C(i) that can be considered?

That question is answered in the affirmative if compound func-
tions are used, and a multiplicative term is introduced that guar-
antees that V* is finite. For example, it is possible to combine an
RBP-like (employing a parameter ¢) continuation function with
Equation 5, to obtain:

Ceo(i) =¢-(1—ri) (10)
where 0 < ¢ < 1 forces convergence in the same way as it does
in RBP itself, meaning that arbitrary truncation at depth k is not
required.

Option Four. Similarly, inspiration can be taken from INSQ [18],
defining
. 2

Cen (i) = (%) (-1, 11)
where T > 0 in conjunction with the squaring of the fraction
forces convergence, and ensures that V* is bounded even when
the summation is taken to co. (In INSQ, T is the total “volume of
relevance” the user is hoping to acquire as a result of their search.)
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Option Zero. Finally, we also add into the set of possibilities (as a
kind of base case, hence the terminology “option zero”) the function
Crpp (i) = ¢, the definition of rank-biased precision [17]. It is not in
any way inspired by ERR, but when ¢ is small (say, ¢ = 0.5), RBP
is also a heavily top-weighted effectiveness metric that can employ
graded relevance via a gain mapping, and hence provides a useful
reference point against ERR.

4 EXPERIMENTS

Given the different ERR-inspired C/W/L alternatives, we now ex-
plore the second question presented in Section 3. First, we aim
to determine whether any of the possible options produce a mea-
surement that approximates the ERR measurement (that is, yields
comparable metric values in a numeric sense); and then second, de-
termine their usefulness, in terms of whether they lead to the same
or similar system orderings as ERR (that is, comparable system
orderings in an experimental outcomes sense).

Experimental Setup. To perform the analysis we used the Ad-
Hoc runs submitted to the 2010 and 2011 TREC Web Tracks [7, 23],
both of which used ERR@20 as the official metric. The 2010 and
2011 tracks contain 56 and 38 runs respectively for each of 50 topics
in each year. We included both runs utilizing the whole ClueWeb09
corpus and those making use of only the ClueWeb09B subset.

The qrels for these two Web Tracks have five levels of relevance:
grade —2 denoting spam; grade 0 denoting non-relevant; and grades
1, 2, and 3 representing increasing levels of relevance. In our experi-
ments we mapped grade —2 back to 0, and then used a four-category
relevance scale (G = 4) to calculate gain, employing the mapping
presented in Equation 2. Expected reciprocal rank scores were then
computed using the official gdeval tool®; with all of the C/W/L
metrics computed within the cwl_eval framework [2].

Figure 3 provides an overview of the resulting ERR@20 scores.
The gain mapping results in a reasonable spread of scores, but with
more ERR@20 below 0.25 than above it, and with a maximum (for
this gain mapping) possible ERR (and ERR@20) score of 0.9347.

To ensure that our analysis was not influenced by unjudged
documents, we next computed residuals (see Moffat et al. [17, 19])
across all system/topic pairs submitted to the 2010 Track, first
calculating an ERR@20 score in the usual manner (taking unjudged
documents as relevance grade 0), then calculating full-depth ERR
taking unjudged documents to have a grade of 3, and then taking the
difference between those two scores. All system/topic combinations
with a residual > 0.05 were discarded, resulting in the retention of
1,760 system/topic pairs (around 65% of the original set of runs).

Approximating ERR@20. To evaluate the parity between mea-
sures, we used the 2010 Web Track runs, holding out the 2011 runs
for the system comparison.

To determine how closely the C/W/L metrics approximate ERR,
we computed the correlation between the measurements taken for
each option and ERR, using both Pearson’s r and Spearman’s p. Each
of the C/W/L metrics has a parameter, and an exhaustive search
was performed to find the parameter value that maximized the
correlation coefficient between the measured ERR@20 scores and
corresponding C/W/L scores for each of the five shallow options.

3https://trec.nist.gov/data/web/10/gdeval.pl
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Figure 3: Observed ERR@20 score distributions for the TREC 2010
and TREC 2011 submitted runs, calculated on a per-system and
per-topic basis. A total of 2,688 runs (system-topic combinations)
are included for TREC 2010, and 1,900 for TREC 2011.

Table 1: Various metrics and their settings to achieve a maximal
Pearson’s r or Spearman’s p with respect to ERR@20, using ex-
haustive search and the TREC 2010 runs. All correlations are highly
significant, with p < 0.01.

Metric Param. Value Pearson’sr Value Spearman’s p

RBP ) 0.50 0.966 0.60 0.990
Crs k 3 0.936 5 0.944
Cro k 7 0.955 20 0.999
Cr1o ) 0.62 0.955 0.70 0.993
Cenr T 1.25 0.953 1.35 0.995

Table 1 reports the correlation coefficients and the correspond-
ing maximizing parameter values, and confirms that very high
score-based correlations can be achieved. Figure 4 plots those same
relationships, with curvilinear relationships emerging between
ERR@20 (which cannot exceed 0.9347) and the various C/W/L in-
spired variants (all of which are bounded above by 0.875 with this
gain mapping). Figure 5 shows the correlation robustness as the
parameter ¢ for RBP and Cg,, (Equation 10) is varied. The maximiz-
ing values shown in Table 1 are at the highest point of each of the
respective curves, but there is a broad band of parameter that yields
high correlations, and the exact choice of ¢ within that broad band
is relatively unimportant.

These results illustrate very clearly that all of the five ERR-
inspired C/W/L metrics, including RBP, can be configured to cor-
relate highly with ERR@20, with the resulting parameters, as ex-
pected, biased towards shallow evaluation. That is, from these ex-
periments we can conclude that ERR can be numerically closely
approximated by C/W/L-structured shallow metrics.

System Orderings. To determine how well the proposed metrics
correlate with ERR@20 in terms of ordering systems, we switch to
the (as yet unused) TREC 2011 Web Track runs, consisting of 38
unique runs over 50 topics. We first scored each run with ERR@20
to define the ground-truth system ordering, and then repeated this
process using each of the five proposed C/W/L metrics, taking the
parameters for each metric that were established using the TREC
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Figure 4: Correlations between ERR@20 and five C/W/L metrics, with parameters set via minimization of Pearson’s r (top) or Spearman’s p
(bottom). Each pane shows a total of 1,760 runs (system-topic combinations). All correlations are highly significant, with p < 0.01.
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Figure 5: Sensitivity of two correlation coefficients between
ERR@20 and RBP, and between ERR@20 and Cg;, as the RBP/Cgy,
parameter ¢ is varied, using the filtered TREC 2010 Web Track runs.
A total of 1,760 runs (system-topic combinations) are included, all
with ERR@20 residuals less than 0.05.

2010 runs (for Spearman’s p, see Table 1). We then computed the
correlation between system orderings for all metric pairs using both
a plain Kendall’s 7 [15], and a top-weighted Kendall’s 7 in which
the weight of the system at rank s was set to 1/(s + 1) (see Shieh
[21] and Vigna [24]). Table 2 shows the results.

As can be seen in the table, the system orderings induced by
the different metrics are almost all greater than 0.9, indicating
close agreement between the metrics. Moreover, the top-weighted
correlations in the lower half of the table tend to be higher than the
corresponding values in the top half of the table, providing evidence
that the six metrics agree closely on high-scoring systems, and that
their differences tend to be in terms of the relative ordering of the
low-scoring systems.

Table 2: Kendall’s 7 between different system orderings on TREC
2011 for all metric pairs using parameters derived from Spearman’s
p on TREC 2010. Entries above the diagonal represent unweighted
correlations; entries below the diagonal represent weighted corre-
lations. All correlations are highly significant, with p < 0.01.

ERR@20 RBP Ces Ceo Ce1o Cen

ERR@20 - 0.932  0.909 0903 0909 0.906
RBP 0.946 - 0.898 0.875 0.881 0.878
Crs 0.940  0.949 - 0.909 0.926 0.906
Cg 0.960 0.921  0.941 - 0.977  0.986
Cg1o 0.944 0941 0967 0.972 - 0.980
Cg1y 0.960 0.921 0.941 0995 0.974 —

Retrospective Validation. Our final experiment was to retrospec-
tively validate the parameter choices for each of the metrics. In
particular, we repeat the earlier experiment where we maximize
the correlation between the ERR@20 run scores, and the proposed
metric scores, measured by either Pearson’s r or Spearman’s p, but
now using the 2011 Web Track data, in order to provide a post-hoc
confirmation of parameter stability (or not) between the two differ-
ent datasets. The maximizing parameters for each of the metrics
over the 2011 Web Track were indeed very similar to those found
for the 2010 data (Table 1). For example, the maximizing parameter
values for RBP measured with Pearson’s r or Spearman’s p were
¢ = 0.46 and ¢ = 0.65 respectively, very close to the values show-
ing in Table 1. Similarly, for TREC 2011 the parameters found for
Cg1; were T = 1.09 and T = 1.23, differing by only a small amount
from those shown in Table 1. Note that Table 2 was constructed
before this final phase of experimentation was undertaken, and that
Table 2 used the parameters developed using (only) the TREC 2010



data (Table 1), maintaining the clear separation between training
data and test data.

5 SUMMARY AND FUTURE DIRECTIONS

We have contrasted the user browsing models, and hence proper-
ties, of a range of shallow effectiveness metrics, with an emphasis
on ERR-like approaches, and on web search applications. While
ERR cannot be described within the C/W/L framework, and its user
browsing model is distinct from that of the C/W/L approach, it gen-
erates run scores that can be closely mirrored by a range of C/W/L-
compliant effectiveness metrics, and generates system orderings
that can likewise be closely matched. Moreover, we demonstrated
that the parameters required to obtain that similar behavior are
relatively stable, suggesting that the relationship between ERR and
the shallow C/W/L metrics is a robust one.

Behind all of these comparisons is, of course, a more fundamen-
tal question — are either of the ERR user browsing model or the
C/W/L user browsing model what users actually do, and if not,
what other factors not already taken into account might influence
their behavior? For example, the last document viewed may have
a disproportionate influence on the overall user perception of the
ranking [16], and focusing on it may be a way of bringing ERR-
style metrics closer to the scores computable from the C/W/L gain
accumulation approach.

New results — including careful measurements based on obser-
vations of users carrying out genuine search tasks, and selecting
model parameters fitted against those observations — can be ex-
pected to continue to emerge as we build a better understanding
of how users interact with search results rankings while they are
carrying out their varied search tasks.
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