
A Comparison of Document-at-a-Time and
Score-at-a-Time Query Evaluation

Matt Crane,1 J. Shane Culpepper,2 Jimmy Lin,1 Joel Mackenzie,2 and Andrew Trotman3

1 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
2 Department of Computer Science, RMIT University, Melbourne, Australia

3 Department of Computer Science, University of Otago, Dunedin, New Zealand
{matt.crane,jimmylin}@uwaterloo.ca, {shane.culpepper,joel.mackenzie}@rmit.edu.au, andrew@cs.otago.ac.nz

ABSTRACT
We present an empirical comparison between document-at-a-time
(DAAT) and score-at-a-time (SAAT) document ranking strategies
within a common framework. Although both strategies have been
extensively explored, the literature lacks a fair, direct comparison:
such a study has been difficult due to vastly different query eval-
uation mechanics and index organizations. Our work controls for
score quantization, document processing, compression, implemen-
tation language, implementation effort, and a number of details, ar-
riving at an empirical evaluation that fairly characterizes the perfor-
mance of three specific techniques: WAND (DAAT), BMW (DAAT),
and JASS (SAAT). Experiments reveal a number of interesting find-
ings. The performance gap between WAND and BMW is not as
clear as the literature suggests, and both methods are susceptible to
tail queries that may take orders of magnitude longer than the me-
dian query to execute. Surprisingly, approximate query evaluation
in WAND and BMW does not significantly reduce the risk of these
tail queries. Overall, JASS is slightly slower than either WAND
or BMW, but exhibits much lower variance in query latencies and
is much less susceptible to tail query effects. Furthermore, JASS
query latency is not particularly sensitive to the retrieval depth,
making it an appealing solution for performance-sensitive appli-
cations where bounds on query latencies are desirable.

Keywords
Efficiency; Experimentation; Measurement

1. INTRODUCTION
Document-at-a-time (DAAT) query evaluation and score-at-a-time
(SAAT) query evaluation represent two fundamentally different ap-
proaches to top k document retrieval. These two approaches have
vastly different mechanics and share strong affinities to different in-
dex organizations, namely document-ordered indexes and impact-
ordered indexes, respectively. These facts and other implemen-
tation details make a fair comparison between DAAT and SAAT
strategies difficult. Although both have been extensively studied,
the literature can be characterized as having parallel threads: DAAT

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM 2017, February 06 - 10, 2017, Cambridge, United Kingdom
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4675-7/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3018661.3018726

strategies are for the most part only compared to other DAAT strate-
gies, and SAAT to SAAT. To our knowledge, there has not been a
fair comparison between DAAT and SAAT query evaluation within
a common framework that allows us to study their performance
characteristics. Furthermore, both strategies can provide approxi-
mate rankings that enable tradeoffs between effectiveness and effi-
ciency, adding to the complexity of any comparison.

In this paper, we present a fair empirical comparison of DAAT
and SAAT query evaluation. For DAAT, we consider two specific
techniques: WAND [7] and Block-Max WAND (BMW) [8, 12, 14].
For SAAT we consider JASS [20]. Our experiments over mod-
ern web collections control for score quantization, document pro-
cessing, compression, implementation language, implementation
effort, and a host of other details, thus isolating performance char-
acteristics that can be directly attributed to the core algorithms. Our
major findings can be summarized as follows:

• When considering rank-safe query evaluation, WAND and BMW
are comparable in terms of performance. The block-max opti-
mizations in BMW are effective for short queries, but not long
queries. This finding adds more nuance to the general under-
standing in the literature that “BMW is better than WAND”. We
explain this result in detail.

• When considering exact query evaluation, both WAND and BMW
(DAAT) are faster than JASS (SAAT), although the performance
gap is narrower than what one might expect considering that
JASS exhaustively traverses all postings.

• In both exact and approximate query evaluation, JASS exhibits
far less variance in query latencies compared to WAND and BMW,
both of which suffer from occasional tail queries that take orders
of magnitude longer than the median query.

• In both exact and approximate query evaluation, JASS query
evaluation latency is less sensitive to the depth of k in top k re-
trieval than either WAND or BMW, which makes the algorithm
attractive for multi-stage retrieval architectures that might need
to generate large initial candidate sets.

• Understanding the impact of tail queries is critical when compar-
ing the performance profiles of different query evaluation tech-
niques. We show that simply reporting mean running times for
large query sets is not good enough, even when query sets are
broken down by length. Mean query latency does not provide
a clear understanding of variances in latency. A more careful
examination of WAND and BMW shows that tail queries are not
obviously predictable (for example, by query length). Though
relatively uncommon, these queries can have a significant impact
in performance-sensitive applications where bounds on query la-
tencies are desired.

Beyond presenting a comparison between DAAT and SAAT query
evaluation strategies within a common framework, our work con-
tributes to a better understanding of modern processor architectures
in the context of different philosophies to designing efficient algo-
rithms. DAAT strategies have the goal of minimizing the number
of overall computations in generating a top k ranking (e.g., reduc-
ing the number of postings touched and documents scored). The
tradeoff is that such approaches incur the cost of irregular com-
putations, such as skipping around in postings lists—which in ar-
chitectural terms may translate into branch mispredictions and/or
cache misses. On the other hand, SAAT strategies in general and
JASS in particular aim to regularize computations (by minimizing
branch mispredictions and cache misses) even at the cost of in-
curring additional (perhaps even unnecessary) computations. We
seek to understand the effectiveness/efficiency tradeoffs of these
approaches in the context of top k retrieval.

2. BACKGROUND AND RELATED WORK
Following the standard formulation of ranked retrieval, we assume
that the score of a document d with respect to a query q can be
computed as an inner product:

Sd,q =
∑

t∈d∩q

wd,t · wq,t (1)

where wd,t is the weight of term t in document d and wq,t repre-
sents the weight of term t in the query. The goal of top k retrieval is
to return the top k documents ordered by S as quickly as possible.
This formulation captures vector-space models, probabilistic mod-
els such as BM25, as well as language modeling and divergence
from randomness approaches.

Nearly all modern search engines depend on an inverted index
for top k retrieval. As is common today, we assume that the en-
tire index and all associated data structures reside in main memory.
The literature describes a few ways in which inverted indexes can
be organized, and these organizations share affinities with query
evaluation strategies.

In document-ordered indexes, postings lists are sorted by doc-
ument ids (docids) in increasing order and term frequencies are
stored separately. Such indexes are usually associated with DAAT
query evaluation, which achieves high performance by skipping
documents in the postings lists that cannot appear in the top k
results. In typical implementations the term weights (wd,t’s) are
computed during query evaluation as functions of term frequency,
document frequency, etc. The most popular DAAT strategies today
are WAND [7] and its successor BMW [8, 12, 14], both of which
are included in our evaluation. More recent work has looked at
priming the score of the k·th item in the heap using tiering and
other techniques [10]. We do not explore these ideas in this work
since they represent orthogonal optimizations, as SAAT-based ap-
proaches could also benefit from tiering.

Other related work on DAAT-based strategies includes the work
of Fontoura et al. [15] who explored the impact of query length
on several related in-memory processing algorithms, improving ef-
fectiveness by incorporating various document features at traversal
time [33], and better candidate pre-filtering [13].

In frequency-ordered indexes [29], docids are grouped by term
frequency; within each grouping docids are sorted in increasing
order, but the groupings are arranged in decreasing order of term
frequency. Such indexes are typically paired with term-at-a-time
(TAAT) query evaluation strategies, which as the name suggests,
considers each query term in turn [26, 28]. Building on this thread
of work, Anh et al. [3] observed that term weights (wd,t’s) could be
directly stored in such an index instead of the term frequencies. To

facilitate compression, weights can be quantized into integer values
called impact scores. These impact-ordered indexes are typically
used in conjunction with a SAAT query evaluation strategy, which
processes blocks of postings in decreasing impact score, potentially
hopping from term to term. A modern implementation of SAAT is
the JASS algorithm of Lin and Trotman [20], which is the third
technique that we evaluate in this paper. One variant of JASS was
the fastest in a recent reproducibility evaluation comparing several
open-source search engines [21], and thus JASS represents the state
of the art. Note that the reproducibility evaluation did not include
either a WAND or a BMW implementation, so it is unclear how they
compare with JASS. Our study answers this question.

3. APPROACH
In this study we compare two DAAT strategies, WAND and BMW,
and a SAAT strategy, JASS. There are, of course, a multitude of
algorithms that could be included in a performance evaluation, but
studying each incurs substantial effort: here, we opted to focus on
in-depth analyses of a few representative algorithms as opposed to
superficial evaluations of many. WAND and BMW are selected be-
cause they represent the most popular DAAT strategies today. We
evaluate both because, contrary to claims in the literature, we find
that WAND and BMW are comparable in terms of performance—we
explain in detail why this is the case. JASS was selected as the rep-
resentative of SAAT query evaluation due to its performance in the
recent reproducibility study discussed above [21]. We specifically
did not evaluate TAAT query evaluation because those algorithms
have been largely superseded by score-at-a-time approaches. The
choice of the three algorithms also illustrates our point about the
design of modern processor architectures, as we discuss later.

3.1 Overview of Different Techniques
We begin with an overview of WAND, BMW, and JASS, the three
algorithms in our study.

WAND. A popular dynamic pruning algorithm which performs
DAAT traversals during scoring is WAND. The key idea in WAND
is to use a small amount of pre-computed “impact” information in
order to minimize scoring operations while traversing the postings
lists for all of the query terms simultaneously. WAND processing
is straightforward: First, pick an additive ranking model such as
BM25 and construct a document-ordered index. For each postings
list, pre-compute a value Ut which represents the maximum contri-
bution term t can have for the scoring model. When processing a
query, perform a standard DAAT traversal of the postings with the
following twist:

1. Set a finger pointing to the first unevaluated document in each
postings list.

2. Set the term processing order of the lists using the docids: small-
est to largest.

3. While the sum of the Ut scores is less than the score of the k·th
item in the heap, step to the next list.

4. As soon as the heap score is exceeded, the docid in the current
list is selected as the pivot.

5. A finger search is initiated for all lists evaluated before the
pivot, and the current pivot docid is scored if all of the previous
lists’ docids match the pivot.

6. If the true document score exceeds the minimum value in the k
heap, it is added to the heap, and the current threshold is set to
the new minimum heap score.

Algorithm 1 WAND processing with partial scoring.

function WAND(q, I, k, θ)
for t← 0 to |q| − 1 do

U [t]← maxd{wd | (d,wd) ∈ It}
(ct, wt)← first_posting(It)

5: end for
ϕ← −∞ // current threshold
Ans← {} // k-set of (d, sd) values
while the set of candidates (ct, wt) is non-empty do

permute the candidates so that c0 ≤ c1 ≤ · · · c|q|−1

10: score_limit← 0
pivot← 0
while pivot < |q| − 1 do

tmp_s_lim← score_limit + U [pivot]
if tmp_s_lim > ϕ× θ then

15: s← tmp_s_lim
break, and continue from step 21

end if
score_limit← tmp_score_lim
pivot← pivot + 1

20: end while
if c0 = cpivot then // score document cpivot

t← 0
while t < |q| and ct = cpivot do

s← s− U [t] // remove upper bound estimate
25: s← s+ wt // add real contribution to score

if s < ϕ then
break, and reset all pointers to cpivot + 1.

end if
(ct, wt)← next_posting(It)

30: t← t+ 1
end while // s is the score of document cpivot
if s > ϕ then // and is a possible top-k answer

Ans← insert(Ans, (cpivot, s))
if |Ans| > k then

35: Ans← delete_smallest(Ans)
ϕ← minimum(Ans)

end if
end if

else // can’t score cpivot (yet)
40: for t← 0 to pivot − 1 do

(ct, wt)← seek_to_document(It, cpivot)
end for // all pointers are now at cpivot or greater

end if
end while

45: return Ans
end function

The performance of WAND can be further improved by adding
an additional check during document scoring where the current up-
per bound score is lowered by subtracting Ut from the upper bound
sum, and adding the real term document score as it is computed.
Algorithm 1, which is adapted and simplified from Petri et al. [30],
shows how to accomplish this [25, 31]. At Line 15, the current
score is set to the upper bound estimate during pivot selection.
When scoring begins the estimate is removed (Line 24) and the
real contribution for the term is added (Line 25). As soon as the
current score drops below θ (the score of the k·th item in the heap)
scoring can stop and all posting pointers can be updated accord-
ingly. This simple enhancement can lead to a measurable reduction
in the number of documents being fully scored, and the benefits
quickly increase with query length. We will show in Section 4 that

this small change in the WAND implementation greatly reduces the
performance gaps between WAND and BMW reported in previous
work. To achieve faster but approximate query evaluation, the cur-
rent upper-bound score can be boosted by a constant, θ (Line 14).
Clearly, setting θ = 1 will result in score-safe processing.
BMW. The BMW processing algorithm is a practical enhancement
to WAND. The key observation of the BMW algorithm is that post-
ings in inverted indexes are compressed as blocks, and every i·th
posting is left uncompressed in order to support skipping [26]. In-
stead of just using a single global Ut, a series of local block scores
Ub,t can be pre-computed and used to refine pivot selection as the
postings lists are traversed. The goal is to only decompress a block
to compute the real document score when necessary. Decompress-
ing postings blocks adds to the overall query latency and so limiting
the number of blocks that must be fully processed can overcome
the additional overhead of recomputing upper bound estimates us-
ing the Ub,t scores. Several subsequent studies have confirmed that
BMW requires fewer documents to be scored than WAND, and our
results confirm this. However, achieving high performance with
BMW requires careful software engineering, making it difficult to
find publicly available implementations of the algorithm that are
robust, reliable, and reusable.
JASS. Query evaluation in JASS [20] begins by first looking up
the postings corresponding to all query terms. Each postings list
comprises a sequence of decreasing impact scores, each of which
is associated with a run of delta-compressed sorted docids (which
we call a segment). Segments from all postings lists are sorted in
decreasing impact score and processed in that order. For each seg-
ment, its impact score is loaded into a CPU register, and for each
docid in the segment, the register’s value is added to its accumula-
tor. Thus, the final result is an unsorted list of accumulators (hold-
ing the document scores). Note that in an impact-ordered index the
impact score is stored once for each segment and not once for each
docid, and therefore the number of integers read per segment can
be nearly half the number read in a document-ordered index.

To avoid sorting the accumulator list, a heap of the top k can
be maintained during processing. That is, after adding the current
impact score to the accumulator, we check to see if its score is
greater than the smallest score in the heap; if so, the pointer to
the accumulator is added to the heap. The heap keeps at most k
elements, and we break ties arbitrarily based on docid.

For SAAT query evaluation, several approaches to accumulator
organization and management have been previously proposed [1, 3,
16, 26]. In this work, we implement the approach of Jia et al. [16].
Since our impact scores are 9 bits (discussed later), and queries
are generally short, it suffices to allocate an array of 16-bit inte-
gers, one per document, indexed by the docid. Modern hardware
has ample memory to keep the accumulators in memory. This ap-
proach is much simpler than other accumulator management strate-
gies focused on accumulator pruning, e.g., [1, 26], which made
sense when memory was scarce.

Note that the default JASS algorithm exhaustively processes all
postings. That is, the query evaluation algorithm considers all doc-
uments that have at least one query term. This represents a sub-
stantial amount of work in terms of processor operations, but the
computations are highly regular, at least compared to the mem-
ory access patterns of WAND and BMW. However, since we are
processing postings segments in decreasing impact order, we can
terminate at any time—yielding approximate rankings. By defini-
tion, the segments are processed in decreasing importance: larger
score contributions will be added earlier such that the ranking is
gradually refined as query evaluation progresses. This effective-
ness/efficiency tradeoff is controlled by a parameter ρ that specifies

the maximum number of postings to process. Lin and Trotman [20]
describe how ρ can be mapped into wall-clock query execution time
using a simple linear model, thus producing an anytime algorithm
where JASS can be tuned to meet an arbitrary time budget.

3.2 Common Framework
To conduct a fair evaluation between WAND, BMW, and JASS, we
have built a common framework that factors out many issues that
are orthogonal to the performance of query evaluation. In particu-
lar, we have taken care to address the following issues:
Score quantization. One major difference between DAAT and
SAAT strategies is that the latter is only practical with pre-computed
quantized impact scores. In contrast, document-ordered indexes
typically used for DAAT strategies store term frequencies in the
postings and compute document scores with respect to a scoring
model (e.g., BM25) during query evaluation. The substantive dif-
ference is that computing document scores for SAAT involves only
integer additions (summing the impact scores), whereas computing
something like BM25 requires many floating point operations. To
factor out these differences, we have modified WAND and BMW to
work with impact scores (exactly the same as those of JASS, see
more details below), so that in all cases the exact same number of
operations are required to compute an individual document score.

It should also be noted that both WAND and BMW make a pri-
ori assumptions about scoring algorithms and parameter selection.
For example, if BM25 is used, every posting must be pre-scored
in order to compute Ut and Ub,t, and scoring function parameters
cannot be easily changed after indexing occurs. Macdonald et al.
[24] showed that approximations can be used rather than the ex-
act scores, but this may result in solutions that are not safe-to-k or
traversals that process more postings than if the true upper-bounds
were computed. Changing a single parameter requires the entire
index to be re-scored in order to guarantee that Ut and Ub,t are
correct. Furthermore, considering the cost of computing scores on
the fly for every pivot document at query time, it is not clear why
score quantization is not more widely used in current WAND and
BMW systems, especially since such systems are commonly used
for early-stage candidate retrieval in a multi-stage ranking archi-
tecture. This is not a novel idea, in fact Dimopoulos et al. [12]
explored both quantization and document reordering in previous
work, but to our knowledge most current systems do not take ad-
vantage of these techniques. Using quantization can result in a 30%
to 40% improvement in performance, and document reordering ap-
proaches provide similar benefits as well. WAND also benefits from
these enhancements and we shall see shortly that in certain contexts
it benefits proportionally more than BMW does.
Document processing. Document processing, which includes tok-
enization, stemming, and stopword removal, can have a significant
impact on both the effectiveness and efficiency of different query
evaluation strategies. We factor out these differences by using the
ATIRE system [35] to first construct a master index, from which all
our individual experiments derive. That is, in a pre-processing step,
our WAND, BMW, and JASS implementations read the ATIRE in-
dex and rewrite the data in their internal formats. The master index
quantizes document scores in the range 1–511, following the tech-
nique of Crane et al. [9], using BM25 as the scoring model. All
pre-processing for each individual technique includes all necessary
postings sort operations and computing auxiliary data, such as the
block max values for BMW. Thus, our experiments have factored
out differences due to document processing.
Compression. It is fairly obvious that different compression tech-
niques have material impact on the performance of query evalua-
tion techniques, and thus it is necessary to factor out their effects. In

Name # Docs TREC Topics

Gov2 25,205,179 701–850 (‘04–‘06)
ClueWeb09b 50,220,423 51–200 (‘10–‘12)
ClueWeb12-B13 52,343,021 201–300 (‘13–‘14)

Table 1: Summary of TREC collections and topics used.

our framework, we implemented two different compression codecs.
The first is QMX compression [34], which can be thought of as
an extension of the Simple family [2] that takes advantage of SSE
(Streaming SIMD Extensions) instructions in the x86 architecture.
Experiments [34] have shown QMX to be more efficient to de-
code than SIMD-BP128 [18] (a related SIMD-based technique) and
competitive with all SIMD and non-SIMD techniques in terms of
size. In addition, we have also integrated the FastPFor library of
Lemire and Boytsov [18] and corresponding optimizations [19].

For document-ordered indexes, postings are organized around
blocks of 128 integers, both in terms of the skipping entry points for
WAND and for computing the block-max scores for BMW. This or-
ganization fits perfectly with block-based compression codecs such
as OPT-PFor or SIMD-BP128. Although QMX is not block based,
we retain the same organization for comparability to the FastPFor
codec. In all cases, docids were compressed after applying gap
encoding. For JASS, the impact scores are stored uncompressed
(since they are not repeated in an impact-ordered index), while in
WAND and BMW they were compressed without gap encoding.

We ran experiments with both QMX and FastPFor, and the con-
clusions are the same. For brevity, we report the results using QMX
only because it has proven to be faster. Compression is an orthog-
onal issue to what we are interested in, but our experiments show
that it does not really matter anyway.

Language and implementation effort. All implementations are
written in C++, which factors out differences that are attributed to
the programming language. Beyond the implementation language,
one common criticism of studies that attempt to compare very dif-
ferent techniques is unequal implementation effort: more optimiza-
tion effort is spent on one technique than another. To alleviate this
concern: our team includes researchers that have published exten-
sively advocating for DAAT approaches and researchers that have
published extensively advocating for SAAT approaches. We bring
to this work codebases that have formed the basis of many previous
papers [20, 22, 25, 30, 31, 35] and one contribution of this work is
the non-trivial integration of these codebases to eliminate the vari-
ous factors discussed above. The original source of our WAND and
BMW implementations are heavily inspired by code1 of Dimopou-
los et al. [12], which has been further refined to work within a uni-
fied framework. The code used in all experiments reported in this
paper has been made available2,3 for others to replicate and build
on our results.

4. EXPERIMENTAL SETUP
Our experiments used three standard TREC web test collections:
Gov2, ClueWeb09 (category B), and ClueWeb12-B13 (“category
B”). Details for these collections are provided in Table 1, show-
ing their sizes and the corresponding TREC topics used to evaluate
effectiveness. We also used the recently-created UQV test collec-
tion [5]. This collection contains 5,764 queries and has shallow

1https://github.com/dimopoulosk/WSDM13
2https://github.com/jmmackenzie/Quant-BM-WAND/
3https://github.com/lintool/JASS/

judgments for all of the queries on ClueWeb12-B13. After normal-
ization, the average query length is 5.3 terms, and 5,593 queries
(97%) have 10 terms or less. This larger test collection is more
suitable for the evaluation of query latency when effectiveness is
not under consideration.

All experiments used an identical underlying index generated by
the ATIRE system, as described in Section 3.2. For simplicity,
we kept collection processing to a minimum: for each document,
all malformed UTF-8 sequences were converted into spaces, al-
phabetic characters were separated from numeric characters and s-
stripping stemming was applied; no additional document cleaning
was performed except for XML comment and tag removal. We
did not remove stopwords as these are often used in higher or-
der term proximity feature models. As previously described, we
post-processed the ATIRE index into a representation appropriate
to each query evaluation strategy, with the same compression tech-
niques to the extent possible. All document scores were quantized
to 9-bit values based on BM25. Although ATIRE performs multi-
threaded indexing by default, in all our experiments we indexed on
a single thread in order to preserve the original collection document
order. As previously discussed, in these experiments we report re-
sults with QMX compression because it has proven to be faster than
other state-of-the-art compression algorithms [34], but the choice
of compression does not alter our findings.

Experiments were conducted in memory on a Red Hat Enterprise
Linux Server v7.2 (Maipo) with two Intel Xeon E5-2630 CPUs and
256 GB of RAM. All algorithms are single threaded and thus ex-
ecuted on one core in an otherwise idle machine. We measured
query latency in milliseconds. To capture query variance, we pri-
marily report results using a ‘Tukey’ boxplot, in which the box
bounds the 25th and 75th percentiles and the bar inside the box
denotes the median. The whiskers correspond to data within 1.5×
IQR and outliers are plotted as points. For convenience, we add
a red diamond in these plots to represent the mean. Space us-
age is measured in GB (109 bytes) and includes only postings. In
terms of effectiveness, for Gov2 we compute RBP [27] and average
precision, for ClueWeb09b we compute RBP and nDCG@20, and
for ClueWeb12-B13 we compute RBP and nDCG@10. We used
p = 0.8 for all RBP computations. Note that we intentionally use
shallow metrics for the two ClueWeb collections as computing deep
recall-based metrics such as AP are not recommended given the
shallow pooling depth used when producing the original relevance
judgments; see Lu et al. [23] for a more comprehensive discussion
about the effects of metric choice with different collections. The
high residuals for RBP even with p = 0.8, shown in parenthesis in
Table 2, suggest that caution should still be used when interpreting
effectiveness results on the ClueWeb collections.

Our first set of experiments examined exact (rank-safe) query
evaluation. However, WAND, BMW, and JASS all support approx-
imate query evaluation where effectiveness can be traded for effi-
ciency. For WAND and BMW, this is controlled with θ, a prun-
ing threshold which can be interpreted as the extent to which the
query is treated as an AND or an OR. For JASS, the effective-
ness/efficiency tradeoff is controlled by ρ, which is the number of
postings to process. In our second set of experiments we sweep the
θ and ρ parameters to better understand the performance character-
istics in approximate query evaluation.

5. RESULTS
We split the presentation of results into three subsections. First we
consider exact query evaluation, where all the techniques produce
the same output and compete solely on query latency. Next, we
consider approximate query evaluation, where techniques are able

Gov2

System Mean Median Space AP RBP

WANDe 41.6 23.3 17 0.2899 0.5862 (0.0028)
BMWe 30.8 17.4 17 0.2899 0.5862 (0.0028)
JASSe 34.9 20.2 15 0.2899 0.5862 (0.0028)

ClueWeb09b

System Mean Median Space nDCG RBP

WANDe 190.8 73.5 51 0.1380 0.2588 (0.1265)
BMWe 166.3 61.4 52 0.1380 0.2588 (0.1265)
JASSe 170.5 117.8 51 0.1380 0.2588 (0.1265)

ClueWeb12-B13

System Mean Median Space nDCG RBP

WANDe 210.5 114.3 65 0.1240 0.2639 (0.3555)
BMWe 210.3 107.9 65 0.1240 0.2639 (0.3555)
JASSe 221.9 148.7 63 0.1240 0.2639 (0.3555)

Table 2: Effectiveness and efficiency results for exact query evalu-
ation for TREC topics with k = 1000: median and mean latencies
measured in ms, space measured in GB (109 bytes), and standard
effectiveness metrics.

to trade off effectiveness for efficiency. Finally, we reflect on the
characteristics of the different query evaluation algorithms in light
of modern processor architectures.

5.1 Exact Query Evaluation
Our main top-level results are presented in Table 2, which shows
mean and median query latencies, index sizes, and effectiveness
of exact rankings with k = 1000 produced by WAND, BMW, and
JASS (we use the subscript e to denote exact). The index sizes
show no substantial differences in space usage between the dif-
ferent index organizations. The effectiveness metrics confirm that
our implementations are correct and that they compare favorably to
similar results reported in the literature.

An initial look at the results suggests that WAND and BMW are
generally faster than JASS, although JASS is faster than WAND on
Gov2. On the ClueWeb collections, JASS is substantially slower if
we consider median query latency, but compares favorably in terms
of mean query latency. However, a deeper dive into the experimen-
tal results reveals many interesting findings, which we organize be-
low around major themes:

Variance in query latencies. In Figure 1 we summarize query la-
tencies for all techniques across all collections in ‘Tukey’ box-and-
whiskers plots, as described earlier. For both WAND and BMW, we
find outliers and in general broader spans covered by the whiskers,
which indicate greater variance in query latencies. In contrast,
JASS query latencies exhibit fewer outliers and are more tightly
clustered. Thus, even though JASS is slower in terms of median
query latency, the mean latencies for WAND and BMW are greatly
impacted by the outliers. This seems like an important observation
for operational search engines from the perspective of the user ex-
perience, and indeed designers of production systems have devoted
substantial effort to reducing “tail latencies” [11, 17].

Are there any “obvious” predictors of tail latencies? Figure 2
breaks down query latencies by query length for the UQV queries
on ClueWeb12-B13, with different values of k = {10, 100, 1000}.
We used the UQV queries since we are only focused on query la-
tency and the larger number of available queries allows more mean-

●●
●●●

●

●

●
●

●●

●

●●
●
●
●

●
●●
●

●●●●
●
●
●
●●

●

●

●●●●
●
●

●

●●

●

●

●

●
●

●

●●●
●

●
●●●●●●●●●
●●●●
●

●●

●●

●

●●

●
●●
●
●●
●
●●●●●●
●
●●●●●
●
●
●●●
●

●
●
●

●

●

●

●●
●●●
●●
●●●●
●
●●●●●
●
●●
●

●●

●

●

●●●
●●
●●●●●

●●●●

●●●

●●
●●●

●

●●

●

●

●

●

●
●●●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●●
●
●

●●

●

●

●

●●
●
●●●●●
●

●

●

●

●●

●●
●●
●

●

●

●

●●

●
●●

●
●

●●
●
●●
●
●●

●

●
●
●●●●

●
●

●

●

●●

●
●
●●●
●●●
●
●●●

●
●

●●●
●●●
●●●
●●
●

●●●●●●●●
●
●●●●

●

●●
●
●
●●●

●

●●

●
●●

●●●

●

●

●

●●●●
●
●
●
●

●●●●●●●●●●●●●

●●●●●
●●

●●

●●
●

●●

●●●●
●●

●

●●●

●

●●●●

●

●

●

●●
●

●●

●

●●●

●

●
●
●

●●●●●●
●●
●
●●●●
●

●

●

●●●
●●●
●
●●
●

●

●

●●●
●
●

●

●●●●●

●

●
●●●●●●●

●

●●●

●

●

●

●

●●●●●

●

●

●

●●
●●
●

●●●●●
●●

●

●●●

●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●
●●●
●
●●

●

●●

●

●●
●●●●●●●●●●●●●●●

●

●
●

●

●

●●

●
●

●●●●
●●
●●

●

●●●

●

●●●
●
●●●●●●

●●

●

●
●●●

●●

●

●
●

●
●
●

●●●●
●
●●
●
●●●●

●

●●●
●

●

●●●

●
●

●

●

●●●●
●

●

●

●

●●●●●
●
●●●
●
●●●

●

●
●

●

●●

●
●
●●●●●

●

●●●
●●
●●●

●●●
●

●●
●●

●●

●

●
●
●
●
●

●●●●●
●
●●●●●●●

●

●●●

●●
●

●●
●

●
●●●●●●●●●●●●●●

●●
●
●
●
●●●●●●●

●
●●●●●

●

●
●●
●
●●
●●●●●

●

●●●
●●
●
●

●
●●●

●
●
●●●●

●●●
●

●

●●●●●●●●
●
●●●●●●

●
●
●●●●
●
●●
●

●

●●●
●
●
●

●

●
●●●

●
●
●●●

●●●●

●

●●●●

●
●●●●
●

●

●●
●●
●

●●
●●

●

●●

●
●

●
●
●●

●●
●
●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●
●
●●●●

●
●

●
●

●
●
●●

●
●●●●●●

●

●
●

●●

●
●● ●●●●●●●

●●●●
●

●●●
●●●
●
●●
●
●●●●
●

●
●●●
●
●
●●

●
●
●

●

●
●●●●●●●●●
●●●●

●
●
●
●

●
●
●●●●●
●

●

●
●●
●
●●
●
●●●●

●●

●
●●
● ●●

●

●●●●●●●●

●●

●
●
●●

●●

●●●
●●●●●●●●

●●●

●

●●●●●
●●

●
●●●

●●
●
●
●

●

●
●●

●

●
●
●●
●
●

●

●

●
●●●
●●

●
●

●●●
●
●

●

●

●

●

●

●
●

●

●
●
●
●
●●●
●●●
●●●●●

●

●
●
●

●

●

●

●●●●●●●
●
●
●
●
●

●

●
●
●

●

●

●

●●●
●●
●●●
●●●
●
●●●
●
●●●●
●

●●

●

●

●
●●●
●●
●●●
●●●●

●●●●

●●●

●●
●●●

●

●●

●

●

●

●
●
●●●

●
●
●

●

●

●
●

●

●

●

●●

●

●●●
●●

●●
●
●

●●
●
●●●●●●

●

●
●●

●●

●●
●●●

●

●

●

●●
●●
●
●●●
●
●●

●

●●

●

●
●
●●●●
●●
●
●

●
●
●

●●●●●
●
●●●
●
●

●●●●●
●●●
●●
●
●●●●
●●●●
●
●●●●

●

●
●
●●
●
●
●
●
●
●●●

●

●

●

●●●●
●
●
●
●

●●
●●●
●●●●●●

●●●●●
●●

●●●●

●●
●
●●

●●●●
●●

●

●●●

●

●●●

●

●

●

●●●●●●●●●●
●●
●

●●●●●●●●
●
●●●●

●

●

●
●
●●●

●
●●
●
●
●

●●●
●
●

●

●●●●●●●

●

●●●●●●●●●

●

●

●

●●

●●●●●

●

●

●●

●●
●
●●

●●●●
●●

●

●●●

●

●●●●

●

●

● ●●●●●●●●●●●●●●●

●●●●●●●●
●●●

●

●

●

●●●
●●●●●●●●●●●

●

●

●

●

●●

●
●
●●●●

●●●

●

●●●
●

●●
●
●●●
●●●

●●●

●●●

●
●

●

●

●
●

●

●●

●●
●●●
●
●●●
●

●●●●●

●

●●●●●

●

●●●

●
●

●

●

●●●●●●●●
●●●

●

●

●

●●●●●●●●●
●●●●
●
●

●

●

●●

●
●
●●●●
●
●●●

●

●●●
●

●
●
●●●
●●●

●●●
●●

●●

●

●
●
●
●
●

●
●●●●
●
●●
●
●●●●

●

●●●
●

●
●●

●
●
●

●

●
●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●●●
●

●

●●●
●●
●
●
●●●●

●

●●●
●●
●●

●

●

●

●●

●●
●●●●●

●

●

●●●
●

●

●●●●●●●●
●
●●●

●

●●●●●
●●●●●●

●
●●●
●●
●

●

●
●
●●

●
●
●●●●
●●

●●●
●

● ●

●●●●●

●

●●
●●●●●

●

●●

●
●

●

●

●●
●●●●●●

●

●
●

●
●

●

●

●

●

●

●

●●
●●●

●

●

●
●

●
●
●●
●●●●●●●

●

●
●

●●

●

●●

●●●●●●●●●
●●●
●
●●
●
●
●●●●●●●

●

●●
●

●
●
●
●
●

●●
●

●
●●●
●
●●
●●●●●●●
●●●
●
●●●
●

●●
●
●

●●
●
●
●
●●●●
●
●
●●●

●●

●●●
●

●●
●
●●●●●●●

●●

●●●
●

●●●●●●●
●●●

●

●●●●●●●
●●●

●

●●

●
●

●
●●
●

●
●
●
●
●
●
●

●

●
●●●
●●

●
●

●●
●●●●
●

●

●

●

●

●

●
●

●

●
●●●
●
●●●●●
●●

●
●

●
●●● ●

●
●●●●
●●●●●●
●
●

●

●●●
●

●

●

●

●●●
●
●
●
●
●●
●
●●●●●●●●
●

●●

●

●●
●●●
●●
●●●●

●●●●

●●●

●●
●●●

●

●●●

●

●

●

●●●●

●●
●
●

●

●
●

●
●
●
●

●

●●●
●●
●●●●
●
●●●●●●●
●

●●

●

●●

●●●
●●
●
●●

●

●●●

●●●●

●●

●●
●●●

●

●●

●

●

●

●●●●

●●
●
●

●

●● ●●●●●●●
●●●●●●

●●●●●●●
●●
●
●●●●●●●
●
●
●●●

●

●
●●
●●
●
●
●●
●
●●●●

●

●●●●●●
●
●●●
●
●●●●
●●●●●
●●●●●●●
●●
●
●●●
●
●

●●●●●●
●●
●

●●

●

●●

●

●

●

●●●●●●●●
●●
●
●●●●●●●●
●
●●●●●

●
●
●
●
●●
●
●●
●
●
●●●●
●
●

●

●●●●●●
●
●●●
●●●
●●●●●●

●

●
●●●●●

●

●●●
●●
●
●●

●●●●●●

●

●●
●
●

●●

●

●

●

●●●●●●●●●●●●●
●
●●●●●●●

●●

●●
●●●

●

●
●●
●●●●
●●●
●
●●●●●
●●●
●
●
●
●
●●
●
●

●
●
●

●
●
●
●
●
●
●●●●●●
●●●●
●

●

●●
●

●●

●

●●●

●●●

●

●●●●●●●●●●

●●

●●●●●●●●●
●

●

●●

●
●●●
●●●

●

●●●●●●●●●●
●
●●

●
●
●

●
●
●
●
●

●
●●●●●
●●●
●
●●●●●●

●

●●●●●●●

●

●●
●

●●
●

●

●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●

●
●
●●●
●
●●●

●

●●●●●●●

●

●●
●
●●●
●

●●●●

●
●●●●●●●●●●

●

●●●●●
●●
●
●●●●●●●

●
●●
●
●●●
●

●●●●

● ●●

●

●
●●●●●●●

●

●

●●

●

●

●

●
●
●●●●●
●●

●

●●

●●

●

●●

●

●
●●●●

●

●
●●

●

●
●

●
●
●●●●●●●

●

●●

●●

●

●●

●●●● ●●●●●●●●●●●●
●
●
●●
●●●●

●●●

● ●●●●●
●●●●●●●●●
●
●

●
●
●
●

●
●
●

● ●●
●
●
●●●

●●

●●●
●

●
●
●●●●

●●

●●●
●

●●●●●
●
●
●
●

●

●●●●
●●●

●

●

1

10

100

1,000

10,000

1

10

100

1,000

10,000

1

10

100

1,000

10,000

1
0

1
0
0

1
0
0
0

1 2 3 4 5 6 7 8 9 10

Query length

T
im

e
 [

m
s
]

System
WANDe

BMWe

JASSe

Figure 2: Distribution of query latencies for UQV queries on ClueWeb12-B13, broken down by query length with k = {10, 100, 1000}.

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

1

10

100

1,000

 GOV2 CW09B CW12B
Collection

T
im

e
 [

m
s
]

System
WANDe

BMWe

JASSe

Figure 1: Visualization of query latencies in Table 2 (TREC topics,
k = 1000) as ‘Tukey’ box-and-whiskers plots. JASS exhibits less
variance in latency than the other approaches.

ingful analysis. One obvious hypothesis is that the outliers tend
to occur with longer queries, but this is clearly not the case: the
worst offenders are actually 3–4 term queries. We certainly do not
make the claim that tail queries are in principle unpredictable with
WAND and BMW, simply that there are no obvious correlates from
our experimental results; such a prediction task would be interest-
ing future work. In contrast, we see that query latencies for JASS
are all much more tightly bounded for all query lengths.

The slowest query for BMW (across all values of k) was “the in-
terpretation of dream”. An interesting anomaly is that this query

ran slower for smaller values of k (Figure 2, Figure 3, and Ta-
ble 3). A failure analysis reveals that this was due to a particular
term distribution, an observation that has been previously noted by
Petri et al. [30]. That is, BMW skips more often, but much less
effectively, as k decreases. This translates into a large overhead
of calculating and inducing skips, but for little reward. Addition-
ally, other design choices such as quantization, stemming, and/or
stopping also contribute to such tail latencies.

From Figure 2 we see that JASS is relatively slow for one-term
queries because it does not perform any special optimizations. For
one term queries it still sorts all postings segments and inserts doc-
ument scores into the heap—both of which are not necessary. This
is a simple optimization that we save for future work.

To further examine the impact of the search depth k, Figure 3
shows the summary distribution of query latencies for UQV queries
on ClueWeb12-B13 with k = {10, 100, 1000}; summary statistics
for this figure are presented in Table 3. We see that JASS is rel-
atively insensitive to k, but the other two techniques grow slower
as k increases. For JASS, the only difference in query evaluation
for different values of k is the number of documents retained in
the heap, and heap operations are dominated by the time taken to
traverse postings (exhaustively), and hence k does not have much
impact. For multi-stage ranking algorithms [4, 36] that may require
large values of k, JASS may be a good choice.

In summary, our experimental results show that the DAAT ap-
proaches are faster, particularly for small values of k, but JASS has
much more predictable query latency.

Additionally, a methodological lesson from these results is the
inadequacy of reporting only summary figures such as those in
Table 2, since they may hide important differences between tech-
niques such as outliers, as we have shown here. However, more

0.23

0.25

0.27

0.29

10 20 30 40
Time [ms]

A
P

0.18

0.21

0.24

0 50 100 150
Time [ms]

R
B

P
0
.8

0.21

0.22

0.23

0.24

0.25

0.26

0 100 200
Time [ms]

R
B

P
0
.8

Measure
Mean

Median

System
WANDx

BMWx

JASSx

Figure 4: Effectiveness/efficiency tradeoffs on Gov2 (left), ClueWeb09b (middle), and ClueWeb12B-13 (right). Curves represent sweeps
across the θ and ρ parameter space, with k = 1000. Effectiveness for Gov2 is reported in AP; for ClueWeb09b and ClueWeb12-B13, RBP
with p = 0.8. Red crosses represent the JASS heuristic of setting ρ to 10% of the collection size.

●

●
●

●

●
●
●

●

●

●

●

●●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●
●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●
●
●
●●●
●●

●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●●●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●
●
●●
●

●●

●

●
●

●

●
●

●●

●

●

●●

●

●
●
●

●

●●

●

●
●

●

●
●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●●
●●

●
●

●●

●

●

●

●
●

●

●●
●●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●●

●

●

●●

●

●●●●
●●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●
●●

●

●●
●

●●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●
●
●
●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●
●●
●
●●
●●●

●

●●●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●●

●

●
●
●●●

●●
●
●

●
●
●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●●●
●

●

●

●

●●

●
●

●

●

●●●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●
●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●●
●
●

●

●

●

●

●●

●●
●

●

●

●

●●
●●

●●
●
●

●

●

●
●

●

●

●
●
●

●●

●●

●

●●
●

●●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●
●
●●●
●
●●

●

●●
●●

●

●●

●

●●●

●

●

●

●
●
●
●
●

●
●●●●

●

●

●
●●
●●●
●●
●●●●●●

●

●●
●
●●●●●●●●●
●●●
●●

●

●
●
●●●●●●●●●
●
●
●

●

●
●

●

●
●●●

●
●

●

●●

●●●

●●
●

●
●

●

●●●

●

●

●

●
●
●

●

●

●●

●

●
●
●●

●

●

●

●
●

●

●
●

●●

●

●
●
●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●
●●
●●

●●●

●
●
●●

●

●

●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●●
●●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●
●●

●
●●

●
●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●
●

●
●

●
●

●
●

●

●

●

●●
●
●

●
●

●

●

●●●

●●

●
●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●●

●
●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●●●

●
●

●
●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●●
●

●

●

●●●

●●●

●

●

●●

●
●●
●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●
●●

●●

●

●

●●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●
●●

●●

●
●

●●

●●

●

●

●●●

●●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●
●
●
●
●●

●

●●●
●
●
●
●
●
●●
●●●●●●
●
●
●

●

●●●●●●
●●
●
●●
●●

●●
●●
●
●
●●●●

●

●

●

●●

●

●●
●
●
●●

●

●

●
●●
●●
●●●
●●●

●
●●●●
●
●

●●

●
●

●

●●

●
●

●●

●

●
●●●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●

●
●

●

●●●●

●

●
●

●

●
●
●

●
●

●

●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●●●●
●●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●

●

●
●

●
●●●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●●
●●
●

●

●●●
●

●
●

●

●

●

●
●●●●

●

●

●

●

●●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●●●
●
●
●
●
●
●

●

●

●
●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●
●

●●
●

●
●

●
●

●●

●

●

●

●

●
●●
●

●
●

●

●
●

●
●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●
●

●

●
●

●
●●●●

●●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●
●●

●
●
●
●●●●

●

●
●

●
●

●

●
●

●

●●●●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●●

●

●●●
●

●
●●

●

●
●
●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●
●
●●●

●
●
●
●
●

●●

●

●
●
●
●
●

●

●

●

●
●

●

●●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●●●

●
●
●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●●●
●
●
●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●
●
●

●●●

●

●

●

●
●

●

●

●

●
●●
●

●
●●

●●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●
●●

●

●
●●●●
●
●

●●●
●
●
●
●
●

●●

●
●●
●●●●
●●●●

●
●
●●

●
●
●
●●●
●●
●●
●●●
●

●
●
●
●●●●●●
●●
●●

●●●●●●
●
●●

●
●
●
●●●
●●

●

●●

●

●●
●
●

●

●●
●

●●●

●

●

●

●

●
●
●
●
●
●

1

10

100

1,000

10,000

10 100 1000
k

T
im

e
 [

m
s
]

System
WANDe

BMWe

JASSe

Figure 3: Distribution of query latencies for UQV queries on
ClueWeb12-B13 with k = {10, 100, 1000}.

detailed breakdown of latency figures, such as box-and-whiskers
plots, have not become standard practice in information retrieval
research. They should be.

The impact of block-max optimizations. According to the in-
formation retrieval literature, there is the general sense that BMW
represents a definitive improvement over WAND in terms of query
latency, but this result is not borne out in our experiments. For ex-
ample, consider Table 2 and Figure 3. On older collections such
as Gov2 and even ClueWeb09b, BMW appears to be consistently
better than WAND. However, the gap narrows in ClueWeb12-B13.
When we move to longer queries as found in the UQV collection,
the trend actually reverses. A closer look at Figure 2 provides
further insight into what is happening: quantization and incremen-
tal scoring changes the relative performance profiles of BMW and
WAND. As queries get longer and the collection size grows, WAND
begins to outperform BMW. On short queries BMW is clearly supe-
rior, but its complex logic for computing skips suffers from dimin-
ishing returns as queries become longer. Longer queries are more
likely to benefit from partial scoring, but the number of additional
cache misses incurred traversing multiple postings lists to compute
block score refinements also increases.

Taking into account all these results, there is a much less con-
vincing case that BMW should always be used instead of WAND,
particularly for long queries and quantized indexes. At the very
least we suggest a more nuanced conclusion than simply “BMW is
better than WAND”.

k = 10

Algorithm Min Max Mean Median

WANDe 0.3 3236.5 136.7 61.8
BMWe 0.1 49680.0 209.6 95.7
JASSe 5.3 4886.6 621.4 495.1

k = 100

Algorithm Min Max Mean Median

WANDe 0.5 5397.5 241.7 118.0
BMWe 0.4 48063.6 321.0 157.5
JASSe 5.4 4929.4 671.4 543.2

k = 1000

Algorithm Min Max Mean Median

WANDe 0.7 7066.4 406.2 221.9
BMWe 0.7 16181.2 493.1 264.6
JASSe 5.7 5194.7 656.7 531.9

Table 3: The query time statistics corresponding to Figure 3, tabu-
lated for convenience. Times are reported in ms.

5.2 Approximate Query Evaluation
Our next set of experiments consider approximate query evaluation
where we trade off effectiveness for efficiency. For WAND and
BMW, this tradeoff is controlled by the pruning threshold θ, and
for JASS, the tradeoff is controlled by ρ, which is the number of
postings to process.

In Figure 4, we sweep across the θ and ρ parameter space to
understand the effectiveness/efficiency tradeoffs of WAND, BMW,
and JASS. In all cases, we set k = 1000; for Gov2, we report AP,
for ClueWeb09b and ClueWeb12-B13 we report RBP with p =
0.8. For JASS, Lin and Trotman [20] suggest a heuristic of setting
ρ to be 10% of the collection size—these are shown by the red
crosses on the JASS curves. We call this the JASSa setting. This
heuristic appears to yield a good setting for Gov2 and ClueWeb09b,
but less so for ClueWeb12-B13. Note, however, the y scale in the
ClueWeb12-B13 figure, which exaggerates the effectiveness loss.

To support a fair comparison between approximate WAND, BMW,
and JASS, we selected settings of θ for WAND and BMW that yields
the same effectiveness as the JASSa setting (10% heuristic). That
is, from the red crosses in the JASS curves in Figure 4, we draw a
horizontal line and note where it intersects with either the WAND
or BMW performance curves. We take the closest θ value and call
these settings WANDa and BMWa respectively.

●
●

●

● ●
●

●

●●

●●●●

●
●

●

●●●
●●●

●
●●●●●●●
●●
●●●●
●

●
●

●

●●●●
●
●●
●●●●
●
●●●●
●
●
●●●
●

●

●●
●

●●

●
●●●●●●
●●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●●
●●●
●●

●

●

●

●
●
●

●

●●

●●
●●
●
●
●
●

●
●●

●●

●

●
●
●

●

●●●●
●●
●

●
●●●●●

●

●

●

●●●

●

●

●

●

●●
●

●●

●
●
●
●●●●
●
●
●●●

●●
●
●

●

●
●
●

●
●
●
●●
●●
●●●
●●

●●

●
●●

●

●●

●
●
●
●
●
●
●●

●
●●

●
●

●

●
●
●

●

●●●●
●●
●

●●●●●

●

●

●

●●
●

●
●

●
●●
●●●
●
●●
●●●●●●●●●●●●

●●
●

●

●

●

●
●
●●
●
●

●●●

●

●●
●●

●●
●●●
●●●●●●

●

●

●

●●

●
●

●
●

●
●
●

●●
●
●

●

●●●●●
●
●
●

●

●
●
●●●
●●●●●●

●
●

●

●
●●
●●
●
●
●●●

●
●●●●●●●

●●
●

●

●

●
●
●●
●

●

●●●
●●
●●

●●●

●

●

●●

●

●
●

●●●
●●
●●

●

●
●●●●●
●
●
●
●
●●●●●●
●●

●● ●●●●●

●

●
●
●
●
●

●
●●
●
●
●
●●

●

●
●●

●●●●
●●●●
●
●
●●●
●

●

●

●

●●

●

●●
●●●●

●●●

●
●
●
●●
●
●
●
●●●
●●●●

●

●●●●●●
●
●

●
●
●
●

●●●

●

●
●

●
●
●

●

●

●●●●●●
●●●●●●●

●
●

●●●●
●●●●
●
●●●
●
●
●●●●
●●●●●●●

●

●●●●
●●
●●

●

●
●
●●

●

●
●●
●

●

●

●●●●●

●
●
●●
●●●

●

●●

●
●
●●●
●●●●●

●●●●
●●
●●
●
●●
●●●●

●

●●

●

●

●●●
●

●
●
●●●
●●

●
●●
●
●●
●●●
●●
●●●
●●
●
●●
●
●●
●●●●

●●
●
●

●●

●

●

●●●
●

●●●

●

●

●●

●
●
●●●

●●●

●

●

●
●●●●
●
●●
●

●●●●●●
●

●

●●

●●●
●●●
●
●●●
●
●●
●●●●●●
●

●●
●

●●

●●●

●●

●●●●●
●●●●●●●

●

●●●●●●●

●
●●●

●●●

●
●
●

●

●

●
●
●

●
●

●
●
●
●
●

●

●

●●●●●

●
●●●●●●●
●
●
●
●
●●
●
●●●
●●●

●

●●●

●●●●

●●
●●
●
●●
●●●●
●

●
●●●●
●
●

●

●●●

●
●●

●●●●●●●
●●●●●●●●●●●

●
●●●●●●
●

●
●
●●●
●●●
●
●

●●
●●●●●●●

●

●●

●
●

●

●
●
●

●

●

●●●●●

●
●
●
●
●●●
●●●●
●●

●
●●

●●●●
●

●
●
●
●
●●●
●●●
●●
●●
●
●●

●●●●

●

●●

●

●●●
●●
●
●●
●●●●
●

●●

●

●●●
●●●●
●

●

●●●●
●
●
●●●
●

●●●●●
●
●
●●

●
●
●

●●
●

●
●
●

●

●●
●
●●
●
●
●

●

●●●●

●

●●

●

●●●
●
●●●●

●

●●●●●
●
●●●●●

●

●●●●●
●
●

●
●●
●
●
●

●●
●

●
●●

●●●●
●●
●
●●

●

●●●●●
●●●●●●

●

●●●

●

●●

●

●

●●●●●●
●●●●

●●●
●●
●●
●

●●●
●

●●●●
●

●
●●●●
●
●
●
●●●●

●
●

●

●

●

●
●

●

●

●●
●●
●●●

●

●
●●●●
●●
●
●●●●●●●●
●

●

●
●●●●

●
●●●●●●
●●●●

●●●
●●
●●●●●
●
●
●
●●●

●●●
●●●●

●

●

●

●
●

●

●

●
●●●
●●

●

●

●●●
●●●●●●●●●●●●

●

●●

●●●●
●
●

●●●●

●

●●

●●

●

●●

●
●●
●●

●

●●●●●●

●

●
●

●

●●
●

●●●

●

●

●●

●

●●

●●●●●●
●
●●●
●●●
●
●●●●
●
●●●

●

●●●
●

●●●●

●
●
●●
●
●●

●●
●
●

●

●●

●
●●
●
●●
●●
●
●●●
●

●●●●
●●
●
●

●
●● ●●

●
●
●
●●
●●●●
●

●●●●
●●●●
●●●
●
●●●●
●
●●●

●

●●●●

●●
●●
●●●
●●
●●

●

●●
●
●
●
●●●●●

●●●
●
●●●●

●
●
●

●

●●

●●
●●
●

●
●

●●●●

●

●●●●●

●●●●

●●●
●●●
●
●●●●●●●●●
●
●
●

●●●

●●●

●

●●
●●●●

●

●

●●●

●

●
●●●●●●●●
●●●
●●●

●

●

●●

●

●
●
●

●●●
●
●
●

●●●●●●●●●●●

●●●●●

●

●●●

●●

●

●

●
●

●

●
●●●●●●●

●

●

●
●●
●
●●
●●●
●●●

●
●

●
●

●

●●●
●
●●●●

●
●
●
●
●
●
●●●●●●

●

●
●●●
●●●●●●●●

●

●●

●

●

●

●●●●
●●
●●

●●●●●●●●

●
●

●●●

●●

●

●●●

●●●●●●●
●●●●●●●●●●●
●●
●

●●●●●●●●

●
●

●

●
●
●

●
●
●
●●
●●

●

●

●
●
●●
●●
●

●
●

●●

●

●
●
●
●●

●

●

●
●
●

●●●
●
●●●●●●●●●●●●
●
●●●

●
●

●

●●●
●●●

●

●●●
●●●●●
●●
●

●
●●●
●
●
●
●●●●

●

●
●
●
●●●●●●
●●
● ●●●

●
●●
●●●
●●●

●

●●●●●
●
●

●●●

●●●

●

●

●
●●
●
●

●●●●●

●

●
●
●
●
●●●

●

●●

●●●●●●
●●
●●●●●●

●●●

●

●

●
●
●●

●
●●

●

●

●

●

●●
●

●
●●
●●
●●
●●

●

●●●●●

●
●●

●
●●●●●●
●

●
●●
●
●
●●

●
●

●●●
●●●●●●●●
●
●
●●●●

●●

●●

●
●

●
●●

●

●

●

●

●●●●●●●●

●●

●

●

●●

●●
●
●●●

●●

●
●●●●●●●●

●●●●

●

●
●

●

●●●●●●

●
●
●●●
●●
●
●
● ●●●●●●●

●●●
●
●

●

●

●

●
●
●

●

●
●
●

●

●
●
●

●
●●

●

●

●
●

●●

●
●
●
●●
●

●●●
●●●

●
●●●
●
●●●●
●
●

●

●●

●

●

●

●

●●●●●

●

●

●●

●

●●

●
●

●●●●●

●●●
●

●

●

●

●

●●●
●

●●
●●
●
●
●

●

●●●

●
●

●

●●●●●●
●●●
●●●

●●
●●●●

●●●●
●
●

●●

●

●
●
●●

●●

●

●

●

●

●
●
●●
●●●

●

●

●●
●

●

●●●●
●●●
●●
●●
●
●●●

●●
●

●

●
●●
●●

●●

●

●

●

●
●
●●
●●●

●
●
●●

● ●●
●●●●
●●●
●
●●●
●
●●

●

●●●

●
●●
●
●

●●●
●
●

●

●●●●
●●●
●●●●
●●●●
●●
●●●●●●
●
●●●●●

●●

●
●●
●●

●

●
●
●●
●
●
●

●

●●
●

●●
●●
●
●●●
●
●
●●
●●
●●●

●

●●●

●
●●
●
●
●●●
●
●

●

●●●
●

●

●
●●●
●●●
●●●●●●
●●●
●
●
●●

●
●●
●●

●●
●●●●
●

●

●●
●

●●●●●●

●
●
●
●
●
●●●●●●
●
●●●●●●●●●●●
●

●

●●
●●●●

●
●●●

●

●●●

●●

●●●
●●●
●●●
●

●●

●

●●●
●
●

●
●●
●
●
●●●●●●●●
●
●●
●●
●
●
●

●

●●●●●●●●●●●●●●●●●●●
●

●

●
●
●●●●

●
●●●

●

●●●
●

●

●
●●●●●●
●

●
●

●

●●●
●
●

●
●
●●●●
●
●●●●
●●
●●●

●

●

●

●●●

●●
●●●●●●

●

●
●●●
●
●●
●●●●●●
●●●
●

●

●●

●●

●●

●●
●●

●
●●

●
●●●●●

●

●●●●●●●●●●●
●●●
●

●●
●●

●●●●

●
●●

●

●●●●

●●●●
●

●●●●
●●

●
●●
●
●
●●

●
●

●
●

●●●●
●●
●
●

●

●
●
● ●●

●
●●●●●●

●
●

●
●
●●●●

●

●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●●

●

●

●●●●●
●●●
●●●
●●●●
●
●

●●
●●
●
●
●

●

●
●
●

●●●●●●●●●●●●
●●
●
●

●
●
●
●

●
●
●●
●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●
●●●●●●

●
●

●●

●

●●●
●
●
●
●●●

●●

●●●
● ●●●

●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●
●●
●●●

●

●●
●
●●●●●
●

●
●
●

●

●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●

●●

1

10

100

1,000

1

10

100

1,000

1

10

100

1,000

1
0

1
0
0

1
0
0
0

1 2 3 4 5 6 7 8 9 10

Query length

T
im

e
 [

m
s
]

System
WANDa

BMWa

JASSa

Figure 6: Distribution of query latencies for approximate query evaluation techniques for UQV queries on ClueWeb12-B13, broken down by
query length with k = {10, 100, 1000}.

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●●

●●

●

●

●
●

●

●

●●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●
●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

1

10

100

1,000

 GOV2 CW09B CW12B
Collection

T
im

e
 [

m
s
]

System
WANDe

WANDa

BMWe

BMWa

JASSe

JASSa

Figure 5: Distribution of query latencies for exact and approximate
variants of WAND, BMW, and JASS, with k = 1000.

Figure 5 shows the distribution of query latencies for WANDa,
BMWa, and JASSa as defined above. For reference, the exact query
evaluation conditions from Figure 1 are replicated here. We see that
although the approximate variants of WAND and BMW do indeed
decrease query latency, they do little to reduce the variance in la-
tencies. Furthermore, outliers are still present, which means that
WAND and BMW are not particularly effective for controlling tail
latencies. In contrast, approximate JASS reduces the span of the
whiskers and tightly controls tail latencies—this is indeed in its de-
sign. Once JASS traverses ρ postings, it terminates, and since the

number of traversed postings is linear with respect to query evalu-
ation latency, JASS provides a very responsive “knob” for control-
ling query latencies.

In Figure 6 we further analyze query latencies of the approxi-
mate variants WANDa, BMWa, and JASSa for the UQV queries
on ClueWeb12-B13 with k = {10, 100, 1000}. The box-and-
whiskers plots break down query latencies by query length. Appar-
ent here is the contrast between JASSa and the approximate DAAT
variants. Query latencies increase for WANDa and BMWa as the
queries become longer, but not for JASSa, since it sets an upper
bound on the number of postings processed. JASS is able to effec-
tively control tail latencies, consistent with the experiments above.

Finally, in Figure 7 we examine the effects of different values
of k for the approximate variants. The latency distribution of the
exact algorithms from Figure 3 are replicated for reference. The
conclusions here are consistent with exact query evaluation: JASS
is insensitive to k and approximate variants of WAND and BMW do
not address the issue of tail latencies.

5.3 Modern Processor Architectures
Finally, these results teach us interesting lessons about modern pro-
cessor architectures. The insight behind nearly all performance op-
timizations in DAAT query evaluation is skipping documents that
cannot possibly be in the top k. This is realized in WAND via dy-
namic pruning; block-max optimizations introduce more complex
logic that enable the skipping of more documents. Skipping, how-
ever, has associated costs that may be non-trivial on modern pro-
cessor architectures. Skipping logic necessarily involves branches,
which can potentially translate into pipeline stalls when branch
prediction fails. Skipping postings creates irregular memory ac-

●

●
●

●

●
●
●

●

●

●

●

●●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●
●

●
●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●
●
●
●●●
●●

●

●

●
●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●●●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●
●
●●
●

●●

●

●
●

●

●
●

●●

●

●

●●

●

●
●
●

●

●●

●

●
●

●

●
●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●●
●●

●
●

●●

●

●

●

●
●

●

●●
●●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●●

●●
●

●●

●

●

●●

●

●●●●
●●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●
●
●●

●

●●
●

●●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●
●
●
●

●●

●●

●

●

●

●●●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●●●

●
●
●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●
●
●
●
●●

●

●

●

●

●

●

●
●●●
●
●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●
●

●
●

●

●●
●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●●

●

●

●

●●●

●●

●●

●●

●●

●

●
●
●

●
●

●
●
●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●
●

●
●
●

●●
●
●

●●

●

●

●

●●

●

●●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●●●●

●

●
●●●
●

●

●
●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●●
●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●●

●
●

●●
●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●
●

●

●

●●●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●
●
●●
●
●●
●●●

●

●●●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●●

●

●
●
●●●

●●
●
●

●
●
●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●●●
●

●

●

●

●●

●
●

●

●

●●●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●
●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●●
●
●

●

●

●

●

●●

●●
●

●

●

●

●●
●●

●●
●
●

●

●

●
●

●

●

●
●
●

●●

●●

●

●●
●

●●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●●●

●

●●●

●●
●

●

●
●

●

●
●●

●

●

●●

●●

●

●

●

●

●
●

●

●●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●
●

●

●
●

●

●
●●

●●

●●

●

●

●
●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●●

●

●

●

●●

●●

●

●
●

●

●●

●●
●●●

●
●

●

●

●
●●

●

●

●
●
●
●

●

●●

●

●

●●●

●

●●●

●●

●

●

●●●●

●

●
●
●
●

●
●
●

●●●●●

●
●

●●

●

●●
●
●

●
●●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●●
●●

●
●●

●
●●

●

●

●
●

●
●
●

●

●●●

●
●●●●

●

●

●

●

●
●●
●

●

●
●
●
●●

●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●
●
●

●

●

●

●

●

●●
●●●
●
●

●

●

●

●

●
●●
●

●

●●●

●
●

●
●●●

●

●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●
●●
●
●

●

●

●

●

●
●●●

●

●

●●

●

●

●
●

●

●

●

●●
●●●
●
●
●●●
●
●●

●

●●
●●

●

●●

●

●●●

●

●

●

●
●
●
●
●

●
●●●●

●

●

●
●●
●●●
●●
●●●●●●

●

●●
●
●●●●●●●●●
●●●
●●

●
●
●
●●●●●●●●●
●
●
●

●
●
●●●●●●●●●●

●

●
●

●

●
●●●

●
●

●

●●

●●●

●●
●

●
●

●

●●●

●

●

●

●
●
●

●

●

●●
●

●
●
●●

●

●

●

●
●

●
●
●

●●

●

●
●
●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●
●●
●●

●●●

●
●
●●

●

●

●
●
●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●●
●●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●
●●

●
●●

●
●●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●
●

●
●

●
●

●
●

●

●

●

●●
●
●

●
●

●

●

●●●

●●

●
●●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●
●●

●

●
●

●●●

●
●

●●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●
●
●

●

●●●
●
●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●

●

●●●●

●

●●

●

●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●

●
●

●●

●
●
●
●●
●

●
●

●
●

●●

●

●●

●

●

●

●

●

●●●

●●
●●
●●

●
●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●●
●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●
●

●●
●●●

●
●●

●●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●
●
●
●●

●

●●●●●
●

●

●

●

●

●
●

●●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●●

●
●

●

●

●
●

●●

●

●

●●
●
●●●
●●

●

●

●

●
●●●
●
●

●
●
●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●●

●
●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●●●

●
●

●
●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●●
●

●

●

●●●

●●●

●

●

●●

●
●●
●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●
●
●
●●

●●

●
●

●●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●
●●

●●

●
●

●●

●●

●

●

●●●

●●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●●

●●●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●
●
●●●

●

●

●

●

●
●
●●

●

●

●
●

●

●●

●

●
●

●

●

●●
●

●
●

●●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●●

●●

●

●
●

●
●
●●

●

●●●

●

●

●
●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●●

●

●●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●●

●

●

●
●

●

●●
●
●

●
●
●

●

●●
●
●

●
●

●
●
●
●●

●●●
●

●
●
●

●
●

●

●●●

●

●

●

●●
●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●●●

●

●
●●
●●●

●

●●●
●

●
●●●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●●
●

●

●
●

●

●
●●

●
●

●

●

●
●
●

●●
●

●

●

●●●

●
●●

●●

●
●
●

●●

●

●

●●●
●
●

●●

●

●
●
●

●●●●
●
●●●

●●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●
●

●
●

●

●
●

●
●
●
●
●
●●

●

●●●
●
●
●
●
●
●●
●●●●●●
●
●
●

●

●●●●●●
●●
●
●●
●●

●●
●●
●
●
●●●●

●

●

●

●●

●

●●
●
●
●●

●

●

●
●●
●●
●●●
●●●

●
●●●●
●
●

●●

●
●

●

●●

●

●

●

●●

●
●●

●

●
●

●●●●●●●●
●●●

●

●

●●●●

●

●
●

●

●

●

●

●●
●

●

●●●●
●
●●●

●

●
●●●

●

●●●●●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●●
●
●

●

●

●

●●
●●

●

●

●

●●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●●
●

●

●

●●●

●
●

●

●
●●●

●

●

●

●
●

●

●

●●
●
●
●

●
●●

●

●

●
●●
●

●

●

●●

●
●
●

●●

●
●●
●●

●

●
●
●
●

●
●●
●

●●

●
●

●

●

●●●

●

●●●●●

●

●

●●●
●
●

●●●●●●●

●

●

●●

●

●●●●●
●

●

●

●

●

●

●●
●●
●●●
●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●
●

●

●

●

●●

●
●

●●●●●

●

●
●

●

●●●

●

●●●

●

●
●●
●●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●
●●

●

●

●
●
●●
●

●●

●

●

●●

●

●●

●

●●

●

●

●●●
●
●

●

●●

●

●

●

●

●●

●

●
●●●
●
●●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●
●

●●

●●●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●●

●●●●●●
●●
●
●
●●
●●
●●●●
●●●●●●

●

●
●

●●

●

●

●

●

●
●

●

●●

●●

●

●
●
●●●●●

●
●

●

●

●

●

●●
●●

●
●

●●

●

●
●●●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●●

●
●

●

●●●●

●

●●

●

●
●
●

●
●

●

●●●

●

●

●

●

●●

●

●

●
●
●●

●
●●●●●
●●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●

●

●
●

●
●●●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●●
●●
●

●

●●●
●

●
●

●

●

●

●
●●●●

●

●

●

●

●●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●●●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●●●
●
●
●
●
●
●

●

●

●
●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●
●

●●
●

●
●

●
●

●●

●

●

●

●

●
●●
●

●
●

●

●
●

●
●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●
●
●

●

●●●

●

●

●

●●

●
●
●
●

●

●

●
●
●
●

●

●

●

●
●
●●
●

●●●

●

●

●●
●
●

●●●●
●

●

●
●●

●

●

●

●
●

●

●●
●

●●●●●●
●

●

●●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●
●

●●

●
●
●●●●

●

●●

●

●
●

●

●●

●

●

●
●

●

●
●
●

●●

●
●

●●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●
●
●●
●

●
●

●

●
●

●
●
●●

●

●

●

●

●

●●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●
●
●
●●
●

●

●

●
●
●●

●
●

●●
●●●●
●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●

●●

●●

●
●

●
●

●

●

●

●
●
●

●
●●
●

●

●

●
●

●

●●●

●●

●

●●

●
●

●

●

●●
●●

●

●●●●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●
●●●●

●●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●
●

●

●
●

●
●●●●

●●
●

●

●

●
●
●

●

●
●

●

●
●

●

●
●

●

●

●
●
●●

●
●
●
●●●●

●

●
●

●
●

●

●
●

●

●●●●

●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●●

●

●●●
●

●
●●

●

●
●
●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●
●
●●●

●
●
●
●
●

●●

●

●
●
●
●
●

●

●

●

●
●

●

●●●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●●●

●
●
●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●●●
●
●
●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●●

●
●

●

●

●●

●

●

●
●●

●●●

●

●

●

●
●

●

●

●

●
●●
●

●
●●

●●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●●●

●●

●

●
●

●
●
●
●

●

●

●●

●

●

●

●
●
●●●

●●●

●

●

●

●
●●●

●●

●
●

●

●
●

●
●

●
●

●●

●●
●

●

●
●

●

●

●

●

●●
●●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●●●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●●

●

●
●●
●

●
●●
●
●

●

●
●

●

●

●●

●
●

●
●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●
●●
●

●

●●●

●
●
●●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●●●●

●

●
●
●

●

●

●
●●

●
●●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●●

●●

●●●●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●
●●

●

●
●●●●
●
●

●●●
●
●
●
●
●

●●

●
●●
●●●●
●●●●

●
●
●●

●
●
●
●●●
●●
●●
●●●●
●
●
●
●●●●●●
●●
●●

●●●●●●
●
●●

●
●
●
●●●
●●

●

●●

●

●●
●●

●

●●
●

●●●

●

●

●

●

●
●
●
●
●●

●●●●●●●●
●●●●●●●

1

10

100

1,000

10,000

10 100 1000
k

T
im

e
 [

m
s
]

System
WANDe

WANDa

BMWe

BMWa

JASSe

JASSa

Figure 7: Distribution of query latencies for approximate query
evaluation techniques for UQV queries on ClueWeb12-B13 with
k = {10, 100, 1000}.

cess patterns that might create cache misses and hence incur addi-
tional memory latencies. These are potential performance issues in
WAND that are made even more severe in BMW due to the increase
in the complexity of the skipping logic.

The important question is, what is the cost of deciding if post-
ings can be safely skipped relative to the cost of simply traversing
the postings exhaustively? Contrast the approach of WANDe and
BMWe with JASSe, which exhaustively traverses all postings for
every query. However, the traversal is set up such that all memory
accesses are predictable, and hence benefit from pre-fetching, with
minimal branching, thus exploiting modern pipelined processor ar-
chitectures to the extent possible.

In Table 4 we show the mean and median numbers of postings
that are processed for the UQV queries on ClueWeb12-B13. As
expected, BMW processes substantially fewer postings than WAND,
but this does not definitively translate into faster queries, as we have
discussed above. Most interesting is the fact that JASS processes
orders of magnitude more postings, but is not substantially slower.
This finding illustrates the cost of irregular computations (the logic
in deciding what postings to skip) and irregular memory access pat-
terns (the skipping itself) in modern processor architectures. Mod-
ern processors are capable of tremendous instruction throughput,
provided that the computations are organized in a regular manner,
as JASS attempts to do. This is not a new observation, as the lesson
is well-known in the database community [6, 32], but our experi-
ments nicely summarize the performance characteristics of modern
processor architectures in the context of information retrieval algo-
rithms. A pithy summary of this finding might be: it takes as much
time to decide what work you can skip as it takes to just do the
work. Recall that JASS typically does very little work per post-
ing: it has the impact score already in a CPU register, loads a docid
and adds the register to the docid position of the accumulators ar-
ray (resulting in the intermediate score being in a CPU register),
then compares that value to the bottom of the heap (also in a CPU
register), typically not needing to update the heap.

6. CONCLUSION
In summary, our work has reached several interesting conclusions.
First, WAND and BMW appear to exhibit superior performance
compared to SAAT-based methods such as JASS when consider-
ing median query latency. However, a more careful analysis shows

Algorithm Mean Median

WANDe 191,269 133,264
BMWe 126,858 98,260
JASSe 60.1M 47.4M

WANDa 108,661 82,515
BMWa 101,544 78,308
JASSa 4.3M 4.8M

Table 4: The number of postings processed for the UQV queries
on ClueWeb12-B13, for exact and approximate query evaluation
techniques.

that the first two methods have one important weakness that is of-
ten overlooked—the performance of tail queries, which may take
orders of magnitude longer than the median query to execute. Sec-
ond, it is not clear that the superior performance of WAND and
BMW is a significant advantage for very small values of k as simple
bag-of-words systems incorporating these techniques are often first
stage retrieval systems. Thus, retrieving hundreds or even thou-
sands of results for some queries may be necessary. JASS is insen-
sitive to k, and can benefit from increasing the ρ approximation and
retrieve many results simultaneously. JASS also allows the number
of postings scored to be controlled. This means that query latency
can be tightly controlled. Even in an approximate configuration,
there is no obvious way to avoid tail latencies in BMW and WAND,
which can occur at any time. Query length alone does not appear
to be a good predictor of tail queries in WAND and BMW, although
it would be interesting to explore a broader range of features that
might predict these outliers.

Finally, the performance profiles of BMW and WAND are de-
pendent on query length. On short queries, BMW is clearly supe-
rior due to its fine-grained ability to dynamically prune away doc-
uments that need not be considered, at the level of postings blocks.
However, BMW suffers from diminishing returns as queries become
longer and hence more complex. The additional branch mispredicts
and other side effects of irregular computations do not make up for
the fact that BMW scores fewer documents.

Despite decades of research on query evaluation for top k re-
trieval, these observations have been elusive for information re-
trieval researchers due to very different index organizations and
query evaluation mechanics. Only after carefully controlling for
score quantization, document processing, compression, implemen-
tation language, implementation effort, and a number of details are
we able to arrive at an empirical evaluation that fairly characterizes
the performance of document-at-a-time and score-at-a-time query
evaluation. Our common framework can serve as the basis of addi-
tional follow-up explorations.

Acknowledgments. This research was supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC)
and the Australian Research Council’s Discovery Projects Scheme
(DP170102231). Shane Culpepper is the recipient of an Australian
Research Council DECRA Research Fellowship (DE140100275).

References
[1] V. N. Anh and A. Moffat. Pruned query evaluation using

pre-computed impacts. In SIGIR, pages 372–379, 2006.

[2] V. N. Anh and A. Moffat. Inverted index compression using
word-aligned binary codes. Software: Practice and Experience, 40
(2):131–147, 2010.

[3] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with

effective early termination. In SIGIR, pages 35–42, 2001.

[4] N. Asadi and J. Lin. Effectiveness/efficiency tradeoffs for candidate
generation in multi-stage retrieval architectures. In SIGIR, pages
997–1000, 2013.

[5] P. Bailey, A. Moffat, F. Scholer, and P. Thomas. UQV100: A test
collection with query variability. In SIGIR, pages 725–728, 2016.

[6] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory
wall in MonetDB. Communications of the ACM, 51(12):77–85, 2008.

[7] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien.
Efficient query evaluation using a two-level retrieval process. In
CIKM, pages 426–434, 2003.

[8] K. Chakrabarti, S. Chaudhuri, and V. Ganti. Interval-based pruning
for top-k processing over compressed lists. In ICDE, pages 709–720,
2011.

[9] M. Crane, A. Trotman, and R. O’Keefe. Maintaining discriminatory
power in quantized indexes. In CIKM, pages 1221–1224, 2013.

[10] C. M. Daoud, E. S. de Moura, A. Carvalho, A. S. da Silva,
D. Fernandes, and C. Rossi. Fast top-k preserving query processing
using two-tier indexes. IP&M, 52(5):855–872, 2016.

[11] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, 2013.

[12] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. Optimizing top-k
document retrieval strategies for block-max indexes. In WSDM,
pages 113–122, 2013.

[13] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. A candidate filtering
mechanism for fast top-k query processing on modern CPUs. In
SIGIR, pages 723–732, 2013.

[14] S. Ding and T. Suel. Faster top-k document retrieval using
block-max indexes. In SIGIR, pages 993–1002, 2011.

[15] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and
J. Zien. Evaluation strategies for top-k queries over memory-resident
inverted indexes. PVLDB, 4(12):1213–1224, 2011.

[16] X.-F. Jia, A. Trotman, and R. O’Keefe. Efficient accumulator
initialisation. In ADCS, pages 44–51, 2010.

[17] S. Kim, Y. He, S.-W. Hwang, S. Elnikety, and S. Choi.
Delayed-Dynamic-Selective (DDS) prediction for reducing extreme
tail latency in web search. In WSDM, pages 7–16, 2015.

[18] D. Lemire and L. Boytsov. Decoding billions of integers per second
through vectorization. Software: Practice and Experience, 45(1):
1–29, 2015.

[19] D. Lemire, L. Boytsov, and N. Kurz. SIMD compression and the
intersection of sorted integers. Software: Practice and Experience,
46(6):723–749, 2016.

[20] J. Lin and A. Trotman. Anytime ranking for impact-ordered indexes.
In ICTIR, pages 301–304, 2015.

[21] J. Lin, M. Crane, A. Trotman, J. Callan, I. Chattopadhyaya, J. Foley,
G. Ingersoll, C. Macdonald, and S. Vigna. Toward reproducible
baselines: The Open-Source IR Reproducibility Challenge. In ECIR,
pages 408–420, 2016.

[22] X. Lu, A. Moffat, and J. S. Culpepper. On the cost of extracting
proximity features for term-dependency models. In CIKM, pages
293–302, 2015.

[23] X. Lu, A. Moffat, and J. S. Culpepper. The effect of pooling and
evaluation depth on ir metrics. IRJ, 19(4):416–445, 2016.

[24] C. Macdonald, I. Ounis, and N. Tonellotto. Upper-bound
approximations for dynamic pruning. TOIS, 29(4):17:1–17:28, 2011.

[25] J. Mackenzie, F. M. Choudhury, and J. S. Culpepper. Efficient
location-aware web search. In ADCS, pages 4:1–4:8, 2015.

[26] A. Moffat and J. Zobel. Self-indexing inverted files for fast text
retrieval. TOIS, 14(4):349–379, 1996.

[27] A. Moffat and J. Zobel. Rank-biased precision for measurement of
retrieval effectiveness. ACM Transactions on Information Systems,
27(1):2:1–2:27, 2008.

[28] A. Moffat, J. Zobel, and R. Sacks-Davis. Memory efficient ranking.
IP&M, 30(6):733–744, 1994.

[29] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval
with frequency-sorted indexes. JASIS, 47(10):749–764, 1996.

[30] M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic of
WAND. In ADCS, pages 58–65, 2013.

[31] M. Petri, A. Moffat, and J. S. Culpepper. Score-safe term dependency
processing with hybrid indexes. In SIGIR, pages 899–902, 2014.

[32] K. A. Ross, J. Cieslewicz, J. Rao, and J. Zhou. Architecture sensitive
database design: Examples from the Columbia group. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering,
28(2):5–10, 2005.

[33] D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized top-k
processing with global page scores on block-max indexes. In WSDM,
pages 423–432, 2012.

[34] A. Trotman. Compression, SIMD, and postings lists. In ADCS, pages
50:50–50:57, 2014.

[35] A. Trotman, X.-F. Jia, and M. Crane. Towards an efficient and
effective search engine. In Workshop on Open Source Information
Retrieval, pages 40–47, 2012.

[36] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for
efficient ranked retrieval. In SIGIR, pages 105–114, 2011.

