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ABSTRACT
With the growing popularity of the world-wide-web and the in-
creasing accessibility of smart devices, data is being generated at
a faster rate than ever before. �is presents scalability challenges
to web-scale search systems – how can we e�ciently index, store
and retrieve such a vast amount of data? A large amount of prior
research has a�empted to address many facets of this question,
with the invention of a range of e�cient index storage and re-
trieval frameworks that are able to e�ciently answer most queries.
However, the current literature generally focuses on improving the
mean or median query processing time in a given system. In the
proposed PhD project, we focus on improving the e�ciency of high
percentile tail latencies in large scale IR systems while minimising
end-to-end e�ectiveness loss.

Although there is a wealth of prior research involving improving
the e�ciency of large scale IR systems, the most relevant prior work
involves predicting long-running queries and processing them in
various ways to avoid large query processing times. Prediction is
o�en done through pre-trained models based on both static and
dynamic features from queries and documents. Many di�erent
approaches to reducing the processing time of long running queries
have been proposed, including parallelising queries that are pre-
dicted to run slowly [5, 6], scheduling queries based on their pre-
dicted run time [7], and selecting or modifying the query processing
algorithm depending on the load of the system [1, 11].

Considering the speci�c focus on tail latencies in large-scale IR
systems, the proposed research aims to: (i) study what causes large
tail latencies to occur in large-scale web search systems, (ii) pro-
pose a framework to mitigate tail latencies in multi-stage retrieval
systems through the prediction of a vast range of query-speci�c
e�ciency parameters, (iii) experiment with mixed-mode query se-
mantics to provide e�cient and e�ective querying to reduce tail
latencies, and (iv) propose a time-bounded solution for Document-
at-a-Time (DaaT) query processing which is suitable for current
web search systems.
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As a preliminary study, Crane et al. [3] compared some state-of-
the-art query processing strategies across many modern collections.
�ey found that although modern DaaT dynamic pruning strate-
gies are very e�cient for ranked disjunctive processing, they have
a much larger variance in processing times than Score-at-a-Time
(SaaT) strategies which have a similar e�ciency pro�le regardless
of query length or the size of the required result set. Further-
more, Mackenzie et al. [8] explored the e�ciency trade-o�s for
paragraph retrieval in a multi-stage question answering system.
�ey found that DaaT dynamic pruning strategies could e�ciently
retrieve the top-1,000 candidate paragraphs for very long queries.

Extending on prior work [3, 4, 7], Mackenzie et al. [9] showed
how a range of per-query e�ciency se�ings can be accurately
predicted such that 99.99 percent of queries are serviced in less
than 200 ms without noticeable e�ectiveness loss. In addition, a
reference list framework [2, 4, 10] was used for training models
such that no relevance judgements or annotations were required.
Future work will focus on improving the candidate generation
stage in large-scale multi-stage retrieval systems. �is will include
further exploration of index layouts, traversal strategies [3], and
query rewriting, with the aim of improving early stage e�ciency
to reduce the system tail latency, while potentially improving end-
to-end e�ectiveness.
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