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Abstract. A recent line of work has investigated the use of corpus
graphs to improve the latency-vs-effectiveness envelope of information
retrieval systems. The key idea is to build a document-to-document sim-
ilarity graph offline, allowing additional relevance signals to be exploited
during query processing. However, these graphs are inherently expensive
to build, requiring a quadratic “all-pairs similarity” computation. In this
work, we examine the problem of building corpus graphs using bag-of-
words models, and explore heuristics to build high quality graphs at a
fraction of the total cost of exhaustive algorithms. We demonstrate that
simple mechanisms such as document titles, expanded surrogate queries,
and high impact terms can yield effective graphs at a fraction of the cost
of their exhaustive counterparts.

Keywords: Corpus graph construction · Top-k query processing.

1 Introduction and Background

Document retrieval systems are typically composed of multiple processing phases
— cheap candidate generation, followed by subsequent rounds of more expensive
re-ranking — such that utility can be maximized subject to strict resource
budgets [4]. Retrieval systems that use a bag-of-words retrieval phase and then
a neural re-ranking phase (such as a cross-encoder or bi-encoder) [11, 13, 22, 24]
are subject to the vocabulary mismatch problem [21, 25]. That is, documents
that are returned by the candidate selection mechanism must contain a subset of
the user’s query terms, thus ignoring semantic similarity and potentially limiting
the effect of downstream re-ranking models.

Recently, MacAvaney et al. [15] introduced the notion of the corpus graph,
a d-regular graph where document neighbors are reflective of document-to-
document similarity; in essence, each document maintains an adjacency list of d
neighbors that are deemed to be most similar to the document itself, explicitly
clustering documents within the corpus. To build a corpus graph, an offline
query-by-document method [30] is computed via all-pairs similarity [3], with
the top-d neighbors from each document retained.

During the online processing phase, candidate documents can be expanded
with their d nearest neighbors to populate the candidate pool with additional
and potentially relevant documents that were not included in the initial first-
stage of retrieval. Prior work has documented the online performance of corpus
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graphs with both exhaustive and approximate similarity scoring mechanisms
on both dense (TCT-HNP [14]) and sparse (BM25 [27]) paradigms that yield a
competitive trade-off between query latency and effectiveness on MSMARCO-v1
[10, 15]. Subsequent work on dense corpus graphs has applied them to improve
the performance of lexical retrievers [9], and to document re-ranking in the
context of graph neural networks [7].

For a corpus containing |D| documents, graph construction is asymptotically
quadratic, O(|D|2), due to the requirement of scoring each document against
all other documents in the corpus. This motivated us to explore whether
simple and cheap heuristics can be used to build corpus graphs that remain
effective. We provide a comprehensive view on approximate corpus graphs
based on simple bag-of-words retrieval models, and examine their influence
toward trade-off decisions central to the ongoing online efficiency-effectiveness
debate [10]. Our main contribution is on accelerating sparse top-k similarity
scoring as an approximate method for graph construction. We show that
rudimentary query-by-document representations can be readily processed by
existing dynamic pruning methods in lieu of the full query document. In
particular, we demonstrate reductions in sparse corpus graph construction costs
of up to 138× over an exhaustive baseline with negligible quality degradation
on MSMARCO-v1. We also affirm that typical online algorithms that make use of
corpus graphs are robust to noise [10].

2 Cost Effective Corpus Graph Construction

Construction of corpus graphs can be framed as a query-by-document problem
which is, in turn, a classic retrieval problem with long queries. However, it is
well known that efficient dynamic pruning algorithms — those used for inverted
index-based top-k retrieval — tend to slow down as query length increases [20,
28]. Hence, we primarily focus on query reduction heuristics [2], with the aim of
reducing the total number of terms used during processing:

– Title+URL: One approach we employ is to obtain a succinct representation
of the full document term vector by the concatenation of the document title
and URL tokens, if available.3

– TF-IDF: Another simple heuristic from classic term ranking is to use TF-IDF
weights (aboutness and eliteness) [26] by ranking the terms in each indexed
document by their TF-IDF scores. We retain the top-n terms to represent
each document, using both n = 5 and n = 10.

– DTQ: Our final query reduction heuristic relies on the assumption that the
index being used to build the corpus graph has been augmented with queries
(known as document expansion [23, 25]). In this case, it seems obvious to
use these expansion queries as surrogates for the document in the query-by-
document process. In our work, we assume a DocT5Query index is available,
and use the concatenation of the first q expanded queries as the document
representation, with q = 1 and q = 5.

3 The first sentence is used in the absence of a title or URL — 43 times in total.
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Instead of limiting the length of the input document used in the query-
by-document process, we also designed an algorithm to reduce the number of
similarity scores that would be computed. The idea is to issue a full document
as a query to retrieve the k most similar documents, R; then, for a k′ element
prefix of R, each document is scored against only the k documents in R rather
than against the whole of D. This process is repeated until each document has
been processed. The intuition is that the documents in R should be similar to
each other, allowing useful neighbors to still be found. We denote this algorithm
as LimitPairs and set k = 1,000 and k′ = 64, respectively.

3 Experimental Setup

Before outlining our experiments, we briefly describe the experimental settings
used. Our experimental resources are available to facilitate reproducibility.4

3.1 Document Collections and Queries

Our experiments are conducted on the MSMARCO-v1 [1] passage collection,
consisting of 8.8M passages. We used the 2019 and 2020 TREC Deep Learning
track queries [5].

3.2 System Configuration

The PISA search system [19] was used for both graph building (offline) and
first stage retrieval (online) experiments. Top-k retrieval was performed using
BM25 [27] with k1 = 0.82, b = 0.68 and the dynamic pruning algorithm
MaxScore [29], which has been shown to outperform alternatives for long queries
or when k is large [20]. Two indexes were configured. The first index is built
over the unmodified (or original) passage collection, referred to as Original. The
second index used the passage collection augmented with queries via document
expansion, referred to as DocT5Query. Indexes were compressed with SIMD-
BP128 [12] following reordering with recursive graph bisection [6, 18] following
best practice [17]. Second-stage re-ranking was conducted using the lexically
accelerated dense retrieval (LADR) software made available by Kulkarni et al.
[10], which is integrated into PyTerrier [16].5

3.3 Performance Measurement

Effectiveness evaluation was conducted using trec_eval. We primarily focus
on recall, as we believe that LADR is more suited for deployment as an early-
stage component of a multi-stage retrieval system. Following Kulkarni et al.
[10], all end-to-end latency is accounted for — including the first stage inverted-
index traversal — with the exception of encoding queries into their dense
representations for re-scoring.
4 github.com/lgrz/approx-bow-corpusgraph
5 github.com/georgetown-ir-lab/ladr

github.com/lgrz/approx-bow-corpusgraph
github.com/georgetown-ir-lab/ladr
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3.4 Hardware

All experiments were conducted in-memory on a Ubuntu server with two Intel
Xeon Gold 6144 CPUs and 512 GiB of RAM. Graph construction experiments
made use of 28 cores; all online experiments used a single CPU core.

3.5 Online Algorithms

While there are a number of available algorithms that use corpus graphs
including GAR, LADR (adaptive and proactive), and LexBoost, we opt to use
the proactive version of LADR as a representative algorithm due to its simplicity.
In essence, the proactive LADR algorithm takes an initial first-stage set of seed
documents, denoted R0, and re-scores each document in R0 — as well as their
corpus graph neighbors — using a dense retriever. BM25 is used to generate
seed sets of varying sizes (|R0| = {5, 10, 20, 50, 100, 200, 500, 1000}) to obtain
different efficiency-vs-effectiveness points over each graph produced. Dense re-
ranking uses 768 dimensional TAS-B passage embeddings [8].6

4 Experiments and Analysis

The results from our experiments in approximate bag-of-words graph construc-
tion are discussed. First we consider the offline component for approximate
corpus graph construction followed by our evaluation of the trade-offs in
efficiency and effectiveness during document retrieval. Then we conclude with a
discussion on the similarity between the different approximate graphs and how
this may relate to the proactive LADR retrieval mechanism.

4.1 Offline Graph Construction

Our first experiment measures the total latency required to process the input
document collection in order to build a corpus graph. We experimented with both
the Original index as well as a DocT5Query expanded index, measuring two graph
settings: A small graph with d = 16; and a large graph with d = 128. Table 1
shows the results. It is evident that our heuristics can significantly reduce the
total resource expenditure of the graph building process. In particular, the TF-
IDF method can reduce the time required to construct the large graph from 18
hours to a mere 8 minutes on the expanded index. Other heuristics also perform
well, with the lowest observed speedup around 6× using the LimitPairs algorithm.

4.2 End-to-End Retrieval

While the heuristics show rather impressive improvements over the default
corpus graph construction cost, it is not yet clear that these graphs are effective;
6 huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco

huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco
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Table 1: Time in minutes to construct two corpus graphs denoted by d on
MSMARCO-v1 for the two indexes Original, DocT5Query. The relative improvement
with respect to the Exhaustive query-by-document baseline is also shown.

Name Description Avg. |Q| d = 16 d = 128

Time Imp. Time Imp.

O
rig

in
al

Exhaustive Full doc text 30.1 448 – 564 –
Title+URL Title and URL only 7.7 28 16× 37 15×
TF-IDF-5 Top 5 weighted terms 5.0 5 90× 7 81×
TF-IDF-10 Top 10 weighted terms 10.0 24 19× 31 18×
LimitPairs Limit doc pairs scored 30.1 75 6× 75 8×

D
oc

T
5Q

ue
ry

Exhaustive Full doc text 51.1 849 – 1099 –
Title+URL Title and URL only 7.7 27 31× 38 29×
TF-IDF-5 Top 5 weighted terms 5.0 5 170× 8 138×
TF-IDF-10 Top 10 weighted terms 10.0 24 37× 32 34×
DTQ-1 1 surrogate query 4.6 22 39× 40 27×
DTQ-5 5 surrogate queries 11.5 40 21× 67 16×

a trivial generation algorithm could simply return d random edges for each
document, yielding a very cheap — but probably useless — document graph.

To determine whether the graphs produced by our heuristics are useful, we
run a suite of end-to-end experiments. Figure 1 shows the results for both small
and large graphs on TREC DL19 and DL20 tasks, using the DocT5Query index
(with similar trends observed on the original index). Surprisingly, we observe
that irrespective of how cheap our approximate graphs are to construct, LADR
can perform as well as — and in some cases better than — the baseline Exhaustive
graph. For example, the best performing graph overall appears to be constructed
from using a single DTQ query, with an offline cost that is 27–39× lower than
the Exhaustive baseline. While the DTQ methods dominate the Pareto frontier,
the TF-IDF alternative (with n = 5 shown) also performs consistently well across
the board; these methods are the cheapest to compute offline.

To further contextualize these results, we include two randomized graphs
which replace 25% or 75% of the edges in the exhaustive graph with random
edges, denoted Rand. This allows us to observe how (proactive) LADR behaves as
graphs include non-relevant elements. Interestingly, LADR performs reasonably
well with some noise, especially for the smaller graphs, but performance begins
to drop steeply when the majority of the graph is composed of noise.

4.3 Early Precision Metrics

Although we primarily focused on recall, we also measured the effect of using
different graphs approximations on early precision metrics such as NDCG@10.
We found that early precision metrics are less sensitive to the input graph,
with comparable performance observed (all within 0.02 points of Exhaustive)
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Fig. 1: Comparison of performance using proactive LADR and two corpus graph
sizes (d = 16, top; and d = 128, bottom), on the DocT5Query index, for TREC
DL19 (left) and DL20 topics (right). Non-graph baselines BM25 and TAS-B shown
as horizontal lines on the y-axis. Note the logarithmic scale on the x-axis.

across all methods with the exception of the Rand 75% graph. This observation
demonstrates that LADR is resilient to differences in the graph for ranking tasks;
so long as the initial retrieval run yields good documents, LADR is a risk-averse
strategy for incorporating other similar documents into the ranked results list.

4.4 Graph Similarity

Our final experiment explores the similarity between the approximate graphs
and the Exhaustive target by computing the overlap between the adjacency
list of each heuristic graph and the Exhaustive graph. Figure 2 shows the
outcome on the larger d = 128 graphs. Evidently, the overlap is quite small,
with most adjacency lists containing fewer than 25% of vertices in common
with the Exhaustive graph. Given the strong performance observed in previous
experiments, this leads us to a few potential hypotheses. Firstly, while the
Exhaustive bag-of-words graph leans on the cluster hypothesis [10], it may not be
representative of the ideal graph (of which user relevance plays a key role). This
means that there may be significant room for improvement if corpus graphs
of a higher quality were to be systematically constructed, an avenue we plan
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Fig. 2: The distribution of overlapping vertices comparing each heuristic to the
Exhaustive graph with d = 128 on the DocT5Query index. The box covers the
25th to the 75th percentiles, with the median and mean shown as a line and a
diamond, respectively. Whiskers extend to the 10th and 90th percentiles.

to explore in future work. Secondly, we hypothesize that the proactive LADR
algorithm is robust to perturbations in the corpus graph, and is demonstrated
by the strong effectiveness performance observed on the Rand 25% graphs (see
Figure 1). Intuitively this makes sense, as the proactive LADR algorithm re-scores
all neighbors of all seed documents — a good document will be re-ranked so long
as it is a neighbor of at least one seed document.

5 Conclusion and Future Work

In this work, we applied a number of simple, readily available heuristics to reduce
the cost of building corpus graphs with bag-of-words retrieval methods. These
included heuristics that are intrinsic to any corpus (like TF-IDF, or limiting the
number of pairs scored) as well as more specialized heuristics (using document
titles, or expanded queries). Our experiments demonstrate that useful document
graphs can be constructed at a fraction of the cost of the exhaustive baseline.
We also demonstrated that the LADR mechanism [10] is surprisingly resilient to
noise in the corpus graph, making it an attractive choice for practitioners using
approximate methods for corpus graph construction.

There are a number of directions for future work. Firstly, it remains unclear
how corpus graph construction scales to larger corpora and documents of greater
length. Secondly, widening the analysis presented here to related algorithms that
rely on corpus graphs (such as GAR [15] or LexBoost [9]) would paint a more
comprehensive picture of the potential risks of using approximate corpus graphs.
Finally, we only explored lexical corpus graphs in this work; a deeper exploration
of approximate construction methods for dense corpus graphs is warranted, and
some preliminary work in this direction has already been conducted [10].
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