Empirical Asymptotic Growth of Dynamic Pruning Mechanisms

Luke Gallagher
The University of Melbourne
Melbourne, Australia
luke@hypergeometric.net

Abstract

Document-at-a-time query processing can be accelerated through
the use of dynamic pruning mechanisms. In this empirical study
we measure query time as a function of three numeric and three
categorical facets, and infer relationships that allow models of
computation time to be established. Using different-sized subsets
of three collections, three retrieval models, and three pruning
techniques, we quantify the way in which all of collection size,
number of documents retrieved, and query length affect query
execution times. Despite variations across pruning mechanisms,
we find that in combination document retrieval is linear in the
collection size when combined with retrieval depth, across all cate-
gorical dimensions. Our results allow selection of query processing
techniques for specific search tasks, with the choice influenced by
collection size, query length, and number of documents retrieved.

CCS Concepts

+ Information systems — Search engine architectures and
scalability.

Keywords

Efficiency, dynamic pruning, top-k retrieval.

ACM Reference Format:

Luke Gallagher, Joel Mackenzie, and Alistair Moffat. 2025. Empirical
Asymptotic Growth of Dynamic Pruning Mechanisms. In Proceedings of
the 2025 Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP
'25), December 7-10, 2025, Xi’an, China. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3767695.3769477

1 Introduction

Large-scale document retrieval systems must be both effective
(returning suitable documents) and efficient (doing so with low
resource cost) [9, 51], with a range of trade-offs possible between
those two aspects of performance [10, 11, 16, 19, 55]. Dynamic
pruning methods are a critical component in that balancing act,
reducing document-at-a-time ranking costs by only considering
documents that potentially exceed an evolving score threshold
[8, 15, 17, 34, 35, 39, 47, 52], with many enhancements having
been considered [5, 14, 23, 46, 50] across a variety of settings
(25, 27, 37, 41].

® This work is licensed under a Creative Commons Attribution
By International 4.0 License.

SIGIR-AP °25, Xi’an, China.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2218-9/2025/12.

https://doi.org/10.1145/3767695.3769477

Joel Mackenzie
The University of Queensland
Brisbane, Australia
joel.mackenzie@ugq.edu.au

Alistair Moffat
The University of Melbourne
Melbourne, Australia
ammoffat@unimelb.edu.au

One avenue of interest has been on understanding the behavior
of dynamic pruning algorithms. For example, many prior empirical
efforts have sought to quantify which dynamic pruning scheme is
most appropriate across various settings (of which there are many),
including compression codecs, similarity scores, index quantization,
document reordering, and even stop term presence [17, 25, 37, 41].
There has also been interest in predicting the response time of
queries under different query processing strategies [24, 26, 42, 49, 50,
53]. Online predictors can enable query processing to be accelerated
in the aggregate, via least cost algorithmic selection of pruning
methods [48, 50], choosing between (replicated) traversal strategies
in a distributed environment [26], or improving query scheduling
and load management [24].

In the majority of the previous work, alternative methods have
been compared following a standard IR experimental paradigm
— defined test collections, public query sets, and results provided
via graphs and tables that compare query execution times across
various settings. But there is another way of comparing algo-
rithms — via the concepts of asymptotic growth and the “big-
Oh” notation. In this work, we add an asymptotic lens to the
previous style of empirical comparison, explicitly modeling the
runtime of algorithms as their input parameters grow, and fitting
polynomials to a large set of per-query latency observations. Our
experiments employ three categorical dimensions (namely: the
collection; the scoring function; and the dynamic pruning method),
along with three numeric dimensions (namely: d, the collection
size; ¢, the query length; and k, the number of documents to
retrieve). Approximating performance into a numeric model allows
comparison of relative growth across the three numeric dimensions,
and leads to insights that support more carefully targeted selection
of query processing techniques for specific tasks and purposes, with
that choice influenced by collection size, query length, and number
of documents being retrieved.

Section 2 covers the relevant background material in more detail.
Section 3 describes the structure of the experiments that were
carried out, and describes the three categorical and three numeric
facets. Section 4 then presents the empirical results, including
fitted equations that summarize the observed measurements and a
preliminary application to learned sparse retrieval. Section 5 then
concludes our presentation.

2 Document-at-a-time Query Processing

We now introduce precursor work relative to our contributions.

Dynamic Pruning. Fast evaluation of document scores is the
primary goal in top-k retrieval. Exhaustive methods diligently pro-
cess the term postings in their entirety, producing a deterministic
and rank-safe set of candidate documents. One drawback is that
superfluous compute resources are consumed in the exhaustive

https://orcid.org/0000-0002-3241-7615
https://orcid.org/0000-0001-7992-4633
https://orcid.org/0000-0002-6638-0232
https://doi.org/10.1145/3767695.3769477
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3767695.3769477

SIGIR-AP 25, December 7-10, 2025, Xi’an, China.

mode, and dynamic pruning techniques were developed to reduce
this waste. In particular, dynamic pruning algorithms estimate
an upper-bound similarity for each document prior to processing
it, and only fully score documents that might make it into the
current top-k, skipping those that certainly will not. Estimations
are typically made with pre-computed term score upper-bounds
forming a barrier to entry for a document to be deemed “essential”
in resolving the (rank-safe) top-k result list. Block-based dynamic
pruning algorithms like BMW [15] also store per-block upper-
bounds, allowing more finely grained decisions to be made at the
cost of additional index space consumption.

Bag-of-Words Similarity Scoring. Term-weighted scoring meth-
ods [44] benefit from decades of efficiency innovations [13, 43]
making them still today a fast and simple solution to first phase
retrieval pipelines. The three scoring paradigms relevant in our
work are BM25 [45], Query likelihood (QLD) [56] and Poisson-
Laplace (PL2) [1]. The theme of dynamic pruning methodologies in a
large portion of prior investigations revolves around the use of BM25
as the scoring function [15, 36, 49]. In opposition to the over reliance
on BM25, a number of previous works [17, 23, 41] have considered
the implications of deploying alternative scoring mechanisms
within common dynamic pruning strategies to understand what
trade-offs exist and how scoring function performance interacts
across various index configurations and algorithmic optimizations
that can provide additive efficiency improvements [25, 32].

Beyond statistical similarity scoring, learned sparse retrieval
methods - those derived from pre-trained language models -
are rapidly becoming the de facto standard for inverted index-
based retrieval [11, 38, 40]. However, learned sparse retrieval
methods are also known to disrupt traditional dynamic pruning
algorithms [29, 33], as the contextual assignment of term weights
means that long postings lists can receive high upper-bound scores
- a relationship at odds with the inverse document frequency
weightings that apply in most statistical rankers.

Latency, Performance Analysis and Prediction. Existing work
has explored per-query latency as an avenue to understand per-
formance motivated by the goal of attaining empirically backed
predictive models for a range of applications in the search stack
[7, 24, 26, 42, 49, 50, 53]. Typically, dynamic pruning prediction
mechanisms must be fast and cheap as alternative index arrange-
ments and anytime traversal methods may be used in their place
[21, 30]. In distributed search, Macdonald et al. [24] analyze
MaxScore and WAND performance for latency prediction in query
scheduling to yield better throughput in replicated environments.
Notably, they exclude single-term queries, presumably due to the
non-blockwise oriented pruning methods used.

In multi-stage search systems, per-query selection mechanisms
in the first phase can save on resource use for the precision
oriented re-ranking phase, with coarse non-rank-safe pruning as
in Tonellotto et al. [50] for example. Under a different lens, Wu
and Fang [53] analyze performance of (again non-block oriented)
pruning methods, formulating a model of execution time that can be
described asymptotically. It is in part from this work that we draw
inspiration for deriving our own estimation of time in Section 4.
Straddling distributed and multi-stage search, Mackenzie et al. [26]
address tail latency by dynamic prediction of an “effective” depth

Luke Gallagher, Joel Mackenzie, and Alistair Moffat

k using reference rankings as a relevance-agnostic effectiveness
measure and in replicated environments the traversal strategy can
be determined to curb latency in the tail. Acceleration of pruning
methods by preempting an upper-bound score threshold per-query,
in essence warily (that is, an asymmetric loss function) avoids some
of the score processing of (the initial) non-essential items that are
otherwise required during threshold ascent (stabilization) early on
[42]. Other work proposes shifting to an “index synopsis” view for
predictive metadata in terms of efficiency and effectiveness [49].

3 Dynamic Pruning and Query Evaluation Time

We first describe the experimental design and data collection
processes, followed by a discussion of the experimental results.

Similarity Scoring and Pruning Methods. We consider three
scoring functions for ranked retrieval: BM25 [45], a well-known
reference, taking k; = 0.9 and b = 0.4; QLD [56] with Dirichlet
smoothing p = 1000; and PL2 using document length normalization
and correction parameter ¢ = 7 [1]. Three pruning methods were
used with each of those three functions: MaxScore [52]; WAND [8];
and BMW [15]. All implementations were from the PISA search
system [36]. Both the scoring function and pruning method are
categorical facets in our analysis.

Document Collections and Subcollections. The third categorical
facet is document collection. The MSMARCO-v1 [3], Gov2 [12], and
CC-News [28] document collections were used, containing 8.8M
passages, 25.1M documents and 43.5M documents respectively.

The documents in each collection were randomly permuted,
and subsets formed by taking prefixes of size d, with d one of the
three numeric facets. That is, each smaller subset was contained
within each larger subset for each collection. We took d € {1 x
10°, 2 X 10°, 4 x 10°,1 x 10°%,...|D|}, forming seven indexes for
MSMARCO-v1, nine for Gov2, and ten for CC-News.

Query Length. The second numeric facet is query length, grouped
by the number of terms, ¢. Five sets of 1000 queries were made for
each collection, one of each query length ¢ € {1, 2,3, 4, 5}, fifteen
sets in total. Queries were formed by selecting a random document
from the corresponding d = 10° collection, and then sampling ¢
distinct non-stopword terms. This approach guarantees that every
query has at least one conjunctive match in every subcollection it
was applied to.

Retrieved Results. The final numeric facet is k, the number of
highest-scoring documents to be returned. Typical experimental
methodologies explore shallow (to provide to a user) or deep
(to pass to a second refinement phase) requests; here we use
k € {10, 10%, 103, 10%} to cover the entirety of that spectrum.

Hardware and Software. Experiments were conducted on a
Linux server with two Intel Xeon Gold 6144 CPUs @ 3.5 GHz and
512 GiB main memory; PISA [36] was compiled using GCC 8.4.0.
Collection indexes were built using Anserini 0.36.1 [54] with Porter
stemming and stopword removal. These indexes were converted
to the common index file format [22] and then encoded with
SIMD-BP128 [18]. For BMW, a fixed block size of 40 was used [35].
Individual queries were measured as integral “clock tick” start and
stop times in microseconds, with a query that started at tick ¢p and

Empirical Asymptotic Growth of Dynamic Pruning Mechanisms

[' CC-News
BM25

te{l,...5} i
k = 1000

CC-News
BM25

Avg. query time [millisec]

SIGIR-AP 25, December 7-10, 2025, Xi’an, China.

=2 [
k = 1000

CC-News
BM25

=5
k = 1000

107 10° 10° 107

Indexed documents d

=P= RankedOR

== MaxScore

== WAND == BMW

Figure 1: Average query time as a function of collection size for the ten CC-News subset collections (BM25, depth k = 1000). Left pane shows
all query lengths; middle pane isolates two-term queries; and the right pane isolates five-term queries. Note that both axes are logarithmic.

ending at tick t; deemed to take t; —#, + 1 ps. This approach rounds
up the true execution time, and ensures that no queries get reported
as taking zero time.

Indicative Results. With 7 + 9 + 10 subcollections of differing
sizes d, three similarity scoring protocols, four pruning strategies
(including “none”), 1000 queries of each of five query lengths ¢, and
four retrieval depths k, we executed 6,240,000 queries in total.

Figure 1 shows three slices through the resulting data, covering
three pruning methods plus exhaustive (RankedOR) evaluation for
subcollections of CC-News, retrieving k = 1000 documents per
query using the BM25 similarity mechanism. The data slice plotted
in the left pane combines ¢ € {1,...,5} and each point represents
5000 queries. In contrast, the center and right panes restrict query
length ¢ to two of those values, and each plotted point is thus the
average time for 1000 queries of length ¢ over an index of size d.
The three graphs are discussed in more detail in Section 4.

What is important to note is that both of the axes in each pane
in Figure 1 are logarithmic. Straight lines thus indicate polynomial
relationships, with the gradient corresponding to the polynomial
degree. The goal of this investigation is to quantify the numeric
exponents associated with those polynomials.

4 Modeling Execution Time

We now describe the insights we gleaned from our extensive set of
query timings.

Execution-Time Models. For each combination of the three
categorical facets (collection; similarity mechanism; pruning mech-
anism) we model the three numeric facets (collection size, d; query
length, £; documents retrieved, k) via:

T=co+cy-d-¢Y k%, (1)

with ¢p > 0 and ¢; > 0, and with polynomials employed in response
to the approximately linear behavior visible in the log-log plots
in Figure 1. The 36 equations were derived using the curve_fit
function from the SciPy software library, configured to perform

nonlinear least squares using the trust region interior reflective
algorithm [6]. Table 1 shows all 36 equations.

As an example, suppose that a BM25 scoring model is coupled
with BMW on the Gov2 collection (fourth equation, center column),
and suppose that d = 2.5 x 107 and k = 10. The modeled execution
time for a ¢ = 3 term query is then:

0+ 0.00212 - 086 . 110 (016 & 93 626 microseconds

= 23.6 milliseconds,

against a measured average execution time of 24.3 milliseconds.

Note that in this formulation the ¢y and c¢; constants are of
secondary importance relative to the exponents associated with the
three numeric facets in each equation, and it is the latter that drive
the asymptotic growth rates that are the focus of our investigation.
With that in mind, a number of interesting trends emerge.

Exhaustive Processing. First, exhaustive processing takes time
linear in the number of documents (an exponent of d close to
one). While this is not at all surprising, it nevertheless serves as a
useful corroboration of the experimental methodology. Moreover,
exhaustive processing is highly insensitive to k (exponent close to
zero), since the cost of maintaining a min-heap to identify the k
highest scores is a tiny fraction of the overall cost.

Collection Size Facet. Second, note that the three dynamic
pruning techniques are all sub-linear in d (exponents less than one)
once k and ¢ are held constant. Adding documents to a collection
does increase query times, but at a slower rate than at which
documents are being added, suggesting that efficiencies of scale
accrue. Moreover, for most of the combinations of categorical facets,
BMW has the lowest exponent on d, confirming the increasing
relative benefit of its more sophisticated dynamic pruning as
collections grow larger. This relativity can be observed in Figure 1
with ¢ = 2 (center), with the BMW line having a lower gradient than
the other methods.

It is worth noting that the exponents on d for MSMARCO-v1 in
Table 1 tended to be smaller across-the-board than for the other

SIGIR-AP 25, December 7-10, 2025, Xi’an, China.

Table 1: Fitted polynomials over numeric factors: number of documents d; query length ¢; and retrieval depth k. Computed values are in

microseconds per query.

Luke Gallagher, Joel Mackenzie, and Alistair Moffat

MSMARCO-v1

Gov2

CC-News

BM25 RankedOR

189 + 0.00031 -

dl.Ol[l.Oék0.0S

314 + 0.00088 -

dl.Ol fl'23k0'01

2+ 0.00209 -

d1.00f1.09k0.00

MaxScore 26 + 0.00402 - d®7¢0-57k024 533 4+ 0.00051 - d*%8¢031k013 331 +0.00519 - d0-8%¢0-00f0-0
WAND 83 +0.00812 - d%67¢%-65k0-30 727 4 0.00072 - %7 ¢*50k012 512 + 0.00749 - %8 ¢0-000-08
BMW 0 +0.01484 - d%2¢07°k0%32 0 +0.00212 - d*8¢1-10k016 169 + 0.03166 - 404073025
QLD RankedOR 215 + 0.00068 - d*-%0¢1-12k0-02 2.4 0.00267 - d®9¢1-20k000 2 4+ 0.00473 - d1-00¢1-09k0-00
MaxScore 76 + 0.00326 - d0-81¢0-660-21 1+0.00412 - d%92¢091k0-09 14 0.00501 - 4% ¢0-82f0-0
WAND 180 + 0.00284 - dO80¢099k0-25 1 40.00333 - d%4¢%97k%0% 0+ 0.00641 - %5087 0-08
BMW 0 +0.01838 - dO-00¢0-6k0-37 (4 0.00439 - dO83¢142K0-15 0 4 0.02156 - dO70 145018
PL2 RankedOR 279 +0.00115 - d}-00¢1-11E0-01 5.4 0,00368 - d00¢1-19k00 6 +0.00764 - d1-00¢1-08f0-00
MaxScore 98 + 0.00554 - d*81¢0-64k0-19 9 4 0.00549 - d*22¢087Kk000 0 +0.00751 - OO 7OK0-0°
WAND 224 +0.00944 - d%73¢042k030 14 0.00581 - dO92¢080K00% 0 +0.00794 - dO-%4¢0-74E0-10
BMW 0 +0.02780 - %2 ¢%57k%38 0 +0.00680 - d*81¢1-21k016 0+ 0.05112 - @-04¢1-21f0-22

two collections, and the exponents on k are correspondingly higher.
One possibility is that, since MSMARCO-v1 is the smallest collection,
it may not be sufficiently large to observe limiting behavior.

Query Length Facet. Third, and in marked contrast to the obser-
vation just made, note that among the three pruning mechanisms
BMW tends to be the most sensitive to ¢, the query length. That
suggests that BMW is comparatively more efficient on short queries
than long ones, and that in environments where long queries are
the norm, MaxScore or WAND should also be considered, with the
constants ¢y and ¢; then also entering the picture. Note though that
MSMARCO-v1 is not in agreement with this trend for the QLD and
PL2 retrieval models.

The implication of query length ¢ regarding overhead in WAND
and BMW has also been noted by previous researchers [24, 37], and
is caused by the need to keep the postings cursors sorted during
processing. This effect can be observed in Figure 1, with the relative
position of the MaxScore line shifting between the center and right-
side panes.

Number of Documents Retrieved Facet. The BMW approach is
also slightly more sensitive to k, the count of documents retrieved.
Both of these patterns can be attributed to the greater complexity
of BMW — while it might score fewer documents than MaxScore
or WAND, it spends more “meta-processing” time identifying
documents that can be bypassed. This pattern is also visible in
Figure 1, with (in the center and right data slices shown) MaxScore
obtaining an advantage over WAND and BMW as the query length
steps from ¢ = 2 (center) to £ = 5 (right).

Combination of Collection Size and Retrieval Depth. A fourth
observation is that, irrespective of the other experimental settings,
the exponents on d and k uniformly sum to approximately one.
This interesting connection between d and k is best understood by
considering what happens when both d and k double between one
round of experiments and the next. The economies of scale referred

to above that arise when only d is scaled are then almost exactly
eroded by the increase of k; the overall effect is of linear combined
scaling behavior. Indeed, that the two exponents sum to near one
provides further validation of the experimental methodology.

Similarity Scoring. Petri et al. [41] suggest that QLD is more
sensitive to query length than BM25 because score contributions
are normalized in QLD relative to the number of terms in the query.
We observe similar conclusions from Table 1 in the Gov2 and CC-
News collections where QLD presents greater dependence on query
length ¢ across the three pruning methods when compared to the
corresponding pruning counterpart for both BM25 and PL2.

The MaxScore pruning approach couples well with BM25 on all
three collections, and tends to be the fastest in absolute terms
across the ranges of d, ¢, and k measured, gaining as ¢ increases,
and confirming prior experimentation [37]. But that advantage
does not extend to the QLD and PL2 calculations, for which
BMW tends to be uniformly faster. This interesting result can be
explained by the increased cost of scoring documents for both
QLD and PL2 [17]. In other words, the “meta-processing” cost
that BMW spends deciding whether to score a document or not
is more likely to be worthwhile when the scoring function itself
is expensive. Ultimately, if the behavior of a scoring function is
not well understood, our experiments suggest that BMW is a good
choice of pruning algorithm, especially if the index is dynamic.

Prediction Error in Execution-Time Models. We also inves-
tigated the fidelity of the query time predictions that arise from
applying the models derived in connection with Table 1, noting that
each model prediction is static for a given set of input parameters.
Figure 2 quantifies prediction accuracy, fixing the three categorical
facets (collection, similarity computation and pruning mechanism);
fixing k; then taking all of the individual query times for all values
of d and stratifying the differences between predicted and actual
by query length ¢, to generate kernel density plots. As can be
seen, prediction accuracy is good, with the greater dispersion as ¢

Empirical Asymptotic Growth of Dynamic Pruning Mechanisms

0.20
2
B 0.15
<
e}
]
a
' 0.10
L
<
g
2 0.05
€3]
0.00
-50 -25 0 25 50
Additive error [millisec]
COe=1 1 ¢=20¢=31¢=4 Odt=5

Figure 2: Query time prediction error distribution by query length
when k = 1000 for row four of Table 1: BM25+BMW, for CC-News,
amounting to 90 000 queries (out of 360 000 for that model).

increases a consequence of the greater query times. Similar density
plots (not included here) for the Gov2 and MSMARCO-v1 collections
show the same patterns.!

Of the three pruning mechanisms in our execution-time models,
BMW results in greater prediction accuracy overall, with smaller
variance in mean response time. The stratified error distributions
for the other pruning approaches (also omitted here) reflect the key
observations made in connection with Figure 1, with predictions
for MaxScore having greater accuracy for query lengths ¢ > 4, while
the contrapositive was true for BMW, where prediction accuracy
weakens for those same long queries.

Given the insights inferred from the execution-time models, it is
plausible to deploy static predictors as a query processing diagnostic
tool to inform long-term operational decisions in storage practice
[20], resource utilization [24], and in the illustration of performance
trade-offs framed by the (first stage) search task in support of more
advanced predictors [48].

Application to Learned Sparse Retrieval. Our previous ex-
periments were on three traditional similarity scoring regimes.
However, methods of learned sparse retrieval are known to exhibit
different score distributions, and in turn, problematic behavior for
standard dynamic pruning algorithms [29, 33]. Our final experiment
measures which - if any — of those trends translate to learned sparse
retrieval mechanisms. In particular, we employ the Deeperlmpact
method due to both its simplicity (no query encoder is required),
and its strong experimental performance [4]. We plan to extend
this analysis to other learned sparse mechanisms in future work.
Following the earlier experimental setup (see Section 3), we
deploy Deeperlmpact on MSMARCO-v1 with a total of 560,000 queries,
and model the empirical latency, with the results shown in Table 2.
Those results show that all algorithms over Deeperimpact achieve
sub-linear growth with respect to d, the size of the collection, but
with a larger exponent than the statistical scoring approaches.
Similarly, a combined linear relationship exists between d and k,
and BMW continues to be most affected by increases in k. Compared
to the previous experiments Deeperlmpact is more sensitive to £,

1All experimental figures and data are provided as part of the code release.

SIGIR-AP 25, December 7-10, 2025, Xi’an, China.

Table 2: Fitted polynomials for Deeperlmpact on the MSMARCO-v1
collection; BM25 is duplicated from Table 1.

MSMARCO-v1
BM25 RankedOR 189 + 0.00031 - d!-01¢1-0640.05
MaxScore 26 + 0.00402 - d%7>¢0-57 f0-24
WAND 83 + 0.00812 - 067 065030

BMW 0 + 0.01484 - 062079032
0+ 0.00390 - d%% 24001

Deeperlmpact RankedOR

MaxScore 0 + 0.00458 - d0-20 105013
WAND 0 4 0.00424 - d%%4¢1-16f0-10
BMW 0+ 0.02022 - d%70¢1-3150.23

suggesting one possible path for future work that might improve
latency in learned sparse retrieval. Intuitively, this is a reflection
of the problematic score distributions that learned sparse retrieval
gives rise to — when more terms are added, it will be less likely that
dynamic pruning can further accelerate query processing. In these
cases the term-wise upper-bound error rates are typically much
greater than those of statistical retrieval models [29].

5 Limitations and Conclusion

We have built models for query execution time across a set of
36 different categorical facets: three collections, three similarity
scoring regimes, and four pruning strategies (the latter including
“none”). We have then analyzed the resultant polynomial exponents,
and discussed a range of interesting trends that emerged. Notable
is that when k is taken to be fixed, the different pruning methods
have different asymptotic growth rates, with BMW increasing its
advantage as d increases; yet all methods are broadly linear if d
and k are regarded as growing in tandem. Furthermore, we applied
the same methodology to a scoring mechanism for learned sparse
retrieval, and observed that pruning methods are negatively affected
by the query length ¢ in this setting.

There are limiting factors that we have not (yet) sought to
incorporate. For consistency we used a randomized document
ordering to index subcollections, whereas pruned querying time can
be enhanced by strategic document reordering [31]. Similarly, the
compression mechanism was fixed, and it is feasible that different
codecs would give rise to different trends, as document scoring may
become cheaper (or also more expensive), favoring different pruning
mechanisms. There are many other techniques that expedite query
processing that we have not yet considered [31, 37], meaning that
there is considerable scope for further work in this area. Finally, we
considered only inverted index-based document-at-a-time dynamic
pruning methods. Of interest is revisiting our work in algorithms
specifically tailored for learned sparse retrieval [11, 38], or score-
at-a-time retrieval [2, 21].

Acknowledgment. This work was in part funded by the Australian
Research Council (Project DP200103136). The second author was
supported by the Google Research Scholar program.

Software and Data. https://github.com/Igrz/daat-exectime.

https://github.com/lgrz/daat-exectime

SIGIR-AP 25, December 7-10, 2025, Xi’an, China. Luke Gallagher, Joel Mackenzie, and Alistair Moffat

References

[1] G. Amati and C.]. van Rijsbergen. Probabilistic models of information retrieval
based on measuring the divergence from randomness. ACM Trans. Inf. Syst., 20:
357-389, 2002.

396-404, 2018.
[27] J. Mackenzie, C. Macdonald, F. Scholer, and J. S. Culpepper. On the cost of
negation for dynamic pruning. In Proc. ECIR, pages 544-549, 2018.

[28] J. Mackenzie, R. Benham, M. Petri, J. R. Trippas, J. S. Culpepper, and A. Moffat.

V.N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early
termination. In Proc. SIGIR, pages 35-42, 2001.

P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder,
A. McNamara, B. Mitra, T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Tiwary,

CC-News-En: A large English news corpus. In Proc. CIKM, pages 3077-3084,
2020.

[29] J. Mackenzie, A. Mallia, A. Moffat, and M. Petri. Accelerating learned sparse

indexes via term impact decomposition. In Proc. EMNLP Findings, 2022.

and T. Wang. MS MARCO: A human generated machine reading comprehension

[30] J. Mackenzie, M. Petri, and L. Gallagher. IOQP: A simple impact-ordered quer
dataset. arXiv:1611.09268, 2016. g Q ple imp query

processor written in rust. In Proc. DESIRES, pages 22-34, 2022.
[4] S.Basnet, J. Gou, A. Mallia, and T. Suel. DeeperImpact: Optimizing sparse learned
index structures. In Proc. SIGIR ReNEUIR Workshop, 2024.

[5] E. Bortnikov, D. Carmel, and G. Golan-Gueta. Top-k query processing with
conditional skips. In Proc. WWW, pages 653-661, 2017.

[31] J. Mackenzie, M. Petri, and A. Moffat. Anytime ranking on document-ordered
indexes. ACM Trans. Inf. Syst., 40(1):13.1-13.32, 2022.

[32] J. Mackenzie, M. Petri, and A. Moffat. Tradeoff options for bipartite graph
partitioning. Trans. Knowledge & Data Eng., 35(8):8644-8657, 2023.
[6] M.A.Branch, T.F. Coleman, and Y. Li. A subspace, interior, and conjugate gradient
method for large-scale bound-constrained minimization problems. SIAM 7. Sci.
Comput., 21(1):1-23, 1999.

[33] J. Mackenzie, A. Trotman, and J. Lin. Efficient document-at-a-time and score-at-
a-time query evaluation for learned sparse representations. ACM Trans. Inf. Syst.,
41(4), 2023.

[7] D. Broceolo, C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri, and [34] A.Mallia and E. Porciani. Faster BlockMax WAND with longer skipping. In Proc.
N. Tonellotto. Load-sensitive selective pruning for distributed search. In Proc. ECIR, pages 771-778, 2019.

CIKM, pages 379-388, 2013. . . - ..
[35] A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. Faster

(8] A.Z. Berder, D Carmel, M. Herssovici, A. Soffer, and J. Zien. Efficient query BlockMax WAND with variable-sized blocks. In Proc. SIGIR, pages 625-634, 2017.
evaluation using a two-level retrieval process. In Proc. CIKM, pages 426—434, X i X .
2003. [36] A.Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. PISA: Performant indexes

and search for academia. In Proc. SIGIR OSIRRC Workshop, pages 50-56, 2019.
[9] S.Bruch, C. Lucchese, and F. M. Nardini. Efficient and effective tree-based and . X X PP Ag X
neural learning to rank. Found. Trends Inf. Ret., 17(1):1-123, 2023. [37] A.Mallia, M. Siedlaczek, and T. Suel. An experimental study of index compression
and DAAT query processing methods. In Proc. ECIR, pages 353368, 2019.
[38] A.Mallia, T. Suel, and N. Tonellotto. Faster learned sparse retrieval with Block-
Max pruning. In Proc. SIGIR, pages 2411-2415, 2024.

[39] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM
Trans. Inf. Syst., 14(4):349-379, 1996.

[10

S. Bruch, F. M. Nardini, A. Ingber, and E. Liberty. Bridging dense and sparse
maximum inner product search. ACM Trans. Inf. Syst., 42(6), 2024.

[11] S. Bruch, F. M. Nardini, C. Rulli, and R. Venturini. Efficient inverted indexes for
approximate retrieval over learned sparse representations. In Proc. SIGIR, pages
152-162, 2024.

[12] C.L.A. Clarke, N. Craswell, and I. Soboroff. Overview of the TREC 2004 terabyte [40] T.Nguyen, S. MacAvaney, and A. Yates. A unified framework for learned sparse
track. In Proc. TREC, 2004. retrieval. In Proc. ECIR, pages 101-116, 2023.

[13] M. Crane,J. . Culpepper, J. Lin, J. Mackenzie, and A. Trotman. A comparison of [41] M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic of WAND. In Proc.
document-at-a-time and score-at-a-time query evaluation. In Proc. WSDM, pages ACDS, pages 58-65, 2013.
201-210, 2017. [42] M. Petri, A. Moffat, J. Mackenzie, J. S. Culpepper, and D. Beck. Accelerated query

[14] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. Optimizing top-k document processing via similarity score prediction. In Proc. SIGIR, pages 485-494, 2019.

retrieval strategies for block-max indexes. In Proc. WSDM, pages 113-122, 2013. [43] G.E. Pibiri and R. Venturini. Techniques for inverted index compression. ACM

[15] S.Ding and T. Suel. Faster top-k document retrieval using block-max indexes. Comp. Surv, 53, 2020.

In Proc. SIGIR, pages 993-1002, 2011. [44] S.Robertson and H. Zaragoza. The probabilistic relevance framework: BM25 and
[16] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P. Junqueira, and C. Aykanat. beyond. Found. Trends Inf. Ret., 3:333-389, 2009.
Energy-price-driven query processing in multi-center web search engines. In [45] S.Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi
Proc. SIGIR, pages 983-992, 2011. at TREC-3. In Proc. TREC, pages 109-126, 1994.
[17] O.Khattab, M. Hammoud, and T. Elsayed. Finding the best of both worlds: Faster [46] D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized top-k processing with global

and more robust top-k document retrieval. In Proc. SIGIR, pages 1031-1040, 2020.

page scores on block-max indexes. In Proc. WSDM, pages 423-432, 2012.

[18] D. Lemire and L. Boytsov. Decoding billions of integers per second through T. Strohman, H. Turtle, and W. B. Croft. Optimization strategies for complex
vectorization. Soft. Prac. & Exp., 45(1):1-29, 2015. queries. In Proc. SIGIR, pages 219-225, 2005.
[19] J. Leonhardt, H. Miiller, K. Rudra, M. Khosla, A. Anand, and A. Anand. Efficient G. Tolosa and A. Mallia. Many are better than one: Algorithm selection for faster

[20]

neural ranking using forward indexes and lightweight encoders. ACM Trans. Inf.
Syst., 42(5), 2024.

K. Liao, A. Moffat, M. Petri, and A. Wirth. A cost model for long-term compressed

top-k retrieval. Inf. Proc. & Man., 60(4):103359, 2023.

N. Tonellotto and C. Macdonald. Using an inverted index synopsis for query
latency and performance prediction. ACM Trans. Inf. Syst., 38(3):29:1-29:33, 2020.

data retention. In Proc. WSDM, pages 241-249, 2017.

o
=

N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and effective retrieval using
[21] J. Lin and A. Trotman. Anytime ranking for impact-ordered indexes. In Proc. selective pruning. In Proc. WSDM, pages 63-72, 2013.

ICTIR, pages 301-304, 2015.
[22] J. Lin, J. Mackenzie, C. Kamphuis, C. Macdonald, A. Mallia, M. Siedlaczek,
A. Trotman, and A. de Vries. Supporting interoperability between open-source [52

search engines with the common index file format. In Proc. SIGIR, pages 2149—
2152, 2020.

[
_

N. Tonellotto, C. Macdonald, and I. Ounis. Efficient query processing for scalable
web search. Found. Trends Inf. Ret., 12:319-500, 2018.

H. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Inf. Proc.
& Man., 31(6):831-850, 1995.

[53] H.Wu and H. Fang. Analytical performance modeling for top-k query processing.

[23] C. Macdonald, I. Ounis, and N. Tonellotto. Upper-bound approximations for In Proc. CIKM, pages 1619-1628, 2014,

dynamic pruning. ACM Trans. Inf. Syst., 29(4):17:1-17:28, 2011.
[54] P. Yang, H. Fang, and J. Lin. Anserini: Reproducible ranking baselines using

Lucene. J. Data and Inf. Quality, 10(4):16:1-16:20, 2018.

[55] D.Yin, Y. Hu, J. Tang, T. Daly, M. Zhou, H. Ouyang, J. Chen, C. Kang, H. Deng,
C. Nobata,].-M. Langlois, and Y. Chang. Ranking relevance in Yahoo search. In
Proc. KDD, pages 323-332, 2016.

[24] C. Macdonald, N. Tonellotto, and I. Ounis. Learning to predict response times
for online query scheduling. In Proc. SIGIR, pages 621-630, 2012.

[25] J. Mackenzie and A. Moffat. Examining the additivity of top-k query processing
innovations. In Proc. CIKM, pages 1085-1094, 2020.

[26] J. Mackenzie, J. S. Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin.

56
Query driven algorithm selection in early stage retrieval. In Proc. WSDM, pages [

C. Zhai and J. Lafferty. A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179-214, 2004.

	Abstract
	1 Introduction
	2 Document-at-a-time Query Processing
	3 Dynamic Pruning and Query Evaluation Time
	4 Modeling Execution Time
	5 Limitations and Conclusion
	References

