
Profiling and Visualizing Dynamic Pruning Algorithms
Zhixuan Li

zhixuan.li1@uq.net.au
The University of Queensland

Brisbane, Australia

Joel Mackenzie
joel.mackenzie@uq.edu.au

The University of Queensland
Brisbane, Australia

ABSTRACT
Efficiently retrieving the top-𝑘 documents for a given query is a
fundamental operation in many search applications. Dynamic prun-
ing algorithms accelerate top-𝑘 retrieval over inverted indexes by
skipping documents that are not able to enter the current set of
results. However, the performance of these algorithms depends on
a number of variables such as the ranking function, the order of
documents within the index, and the number of documents to be
retrieved. In this paper, we propose a diagnostic framework, Dyno,
for profiling and visualizing the performance of dynamic pruning
algorithms. Our framework captures processing traces during re-
trieval, allowing the operations of the index traversal algorithm to
be visualized. These visualizations support both query-level and
system-to-system comparisons, enabling performance characteris-
tics to be readily understood for different systems. Dyno benefits
both academics and practitioners by furthering our understanding
of the behavior of dynamic pruning algorithms, allowing better
design choices to be made during experimentation and deployment.

CCS CONCEPTS
• Information systems → Information retrieval query pro-
cessing; Retrieval efficiency; • Human-centered computing
→ Visualization systems and tools.

KEYWORDS
Query processing, visualization, profiling, explainability
ACM Reference Format:
Zhixuan Li and Joel Mackenzie. 2023. Profiling and Visualizing Dynamic
Pruning Algorithms. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’23), July 23–27, 2023, Taipei, Taiwan. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3539618.3591806

1 INTRODUCTION
Inverted indexes facilitate scalable query processing over massive
text collections, and can be used to directly answer queries, or to
generate input to more expensive and complex re-rankers [49].
Although different index arrangements are possible, the most com-
mon one is the document-ordered index, where a postings list records
pairs of document identifiers and payloads for each term [52]. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07. . . $15.00
https://doi.org/10.1145/3539618.3591806

postings lists are sorted increasing on the document identifier, and
payloads can be term frequencies, or pre-computed impacts.

A fundamental operation on inverted indexes is top-𝑘 retrieval,
where the highest scoring 𝑘 documents are returned according to
a chosen ranking function. Since postings lists can, in the worst
case, store an entry for every document in the corpus, naïve index
traversal algorithms that examine every posting are prohibitively
expensive. To accelerate the retrieval process, dynamic pruning
algorithms such asWAND [6] orMaxScore [48] can be employed.
These algorithms typically rely on the highest impact observed
across each postings list, known as a score upper-bound, to be stored
during indexing. At query time, a min-heap maintains the highest
scoring 𝑘 documents observed. Each candidate document score is
then estimated via the list-wise upper-bounds before committing to
the computation of the true score (which could result in expensive
decompression and scoring operations). If this estimation is lower
than the lowest scoring element in the min-heap (known as the
heap threshold, 𝜃), then the document can be safely bypassed; it has
no prospect of entering the top-𝑘 results. Further optimizations can
be made by storing a per-block upper-bound, allowing for better
score estimations at the cost of a larger index [7, 15, 32].

While dynamic pruning algorithms are widely accepted as “must-
have” optimizations for fast top-𝑘 retrieval [16], there are a number
of subtleties that can impact their performance. Petri et al. [38],
and later Khattab et al. [19], showed that the choice of ranker alone
could drastically alter the performance characteristics of differ-
ent traversal algorithms. This was also observed for neural learned
sparse rankingmodels [27, 28, 31, 36]. Mallia et al. [34] explored how
different compression codecs [40] and retrieval settings affect per-
formance. They found that the fastest algorithm depended on both
the value of 𝑘 and the length of the given query. Similarly, Macken-
zie andMoffat [25] found that algorithm-independent optimizations
such as estimating the initial heap threshold [18, 35, 39, 50], reorder-
ing the index [4, 13, 26, 43, 44], pre-computing and quantizing the
impact scores [2, 8], and applying stopword lists to queries can
have additive efficiency benefits. We refer the interested reader to
the survey of Tonellotto et al. [47] for a more detailed discussion
on efficient query processing.

Given the complex trade-off space of available algorithms and
optimizations, choosing the right configuration, as well as under-
standing and diagnosing performance shortcomings, can be difficult
in practice. In this work, we propose a diagnostic framework called
Dyno1 for profiling, visualizing, and comparing the performance
of dynamic pruning algorithms. Our contributions are as follows:
(1) We propose a web-based visualization framework for rapidly

comparing and contrasting the performance of top-𝑘 retrieval
algorithms that facilitates analysis on a whole-of-experiment
and on a query-by-query basis;

1Named after a dynamometer , a tool used to measure force, torque, or power.

https://orcid.org/0009-0002-3736-7925
https://orcid.org/0000-0001-7992-4633
https://doi.org/10.1145/3539618.3591806
https://doi.org/10.1145/3539618.3591806

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Zhixuan Li and Joel Mackenzie

(2) We describe the profiling mechanism used to instrument the
PISA search toolkit [33] to collect the appropriate data; and

(3) We run a proof-of-concept analysis campaign on the commonly
used MSMARCO-v1 passage collection to demonstrate the usage
and utility of our framework.

2 DYNO: SYSTEM DESCRIPTION
This section describes the technical details of Dyno, including how
algorithmic profiling is implemented within the PISA system [33]
to generate traces that characterize the index traversal, and how
Dyno processes and visualizes those traces.

2.1 Overview
Dyno is built as a dash app with plotly supporting the data visu-
alization.2 It is implemented entirely within Python, and can be
executed either locally or deployed as a web app. Dyno ingests
simple space-separated data files and processes them to generate
a global dashboard view (allowing comparisons across an entire
log of queries) and per-query traces (for diagnosing algorithmic
performance).

2.2 Generating Profiling Data
In this work, we instrument the highly efficient PISA system [33] to
generate the appropriate input data, noting that any other IR system
supporting dynamic pruning (such as Anserini [51] or Terrier [23])
could be instrumented in the same way. To generate the required
data, a new profile_viz tool was built within PISA. This tool,
like the other standard PISA tools, accepts a series of configuration
arguments such as the index, the query file, and so on. The tool
then executes two individual runs of a given configuration; the
first run generates latency data (taking the mean per-query latency
over three individual runs), with no profiling or instrumentation
included to avoid biasing the measurement; and secondly, a run
which instruments the processing, incrementing counters for each
operation of interest (such as the number of postings scored). This
tool then generates the appropriate output for post-processing,
including the query information, global statistics, and per-query
traces:
• Query Information: For each query, the query tokens, post-
ings list lengths, and list-wise upper-bounds are recorded.

• Global Statistics: For each query, the query latency, number
of documents scored, number of postings scored, and number
of decompression operations are recorded. Since PISA com-
presses document identifiers separately to payloads, a counter
is maintained for each.

• Per-query Traces: For each document scored, the current state
of processing is captured. This includes the current document
identifier, the heap threshold, and the score achieved by the
current document before it was either added to, or rejected
from, the heap.

Both the query information and global statistics are collected on a
“one per query” basis, and are thus typically small. On the other
hand, the traces collect a data point for each document scored, and

2See: https://dash.plotly.com/, accessed January 17, 2023.

can hence result in tens or hundreds of thousands of points per
query. Furthermore, a trace must be generated for each combination
of settings. To reduce storage costs, traces are stored as gzip com-
pressed files, one for each unique query, and are decoded on-the-fly
when required by Dyno.

2.3 Visualization
Once profiling is complete and the output files are placed in the
corresponding data directory, Dyno can be invoked to start the
visualization dashboard. There are three main areas of interest
within the Dyno dashboard.

Firstly, the global comparison page facilitates the comparison of al-
gorithms across the whole log of queries, allowing the experimenter
to gain an overall understanding of how algorithms compare as
settings are varied. Figure 1 demonstrates this page. Note that there
are four key metrics of interest: the overall latency, in microseconds;
the number of documents that were considered viable candidates
during retrieval; the number of postings scored during retrieval;
and the number of compressed document and frequency blocks
decoded. These metrics, together, provide a detailed view of algo-
rithm performance, and can direct further “drill downs” on the data
for query-level tracing.

Secondly, the query tracing page provides a detailed snapshot of
the work done during index traversal for a specific algorithm con-
figuration and query. Figure 2 shows the query tracing interface.
Of particular interest is the statistics panel and the query trace
visualization, which provide information for explaining the perfor-
mance of the current configuration and query. This visualization is
inspired by the static figures from Petri et al. [38].

Thirdly, the per-query statistics page tabulates all available metrics
and configurations with interactive filtering and sorting capability.

3 DEMONSTRATION
In this section, we demonstrate how Dyno can be deployed to facili-
tate comparisons between systems, and for diagnosing performance
issues. Our demo compares a number of top-𝑘 retrieval algorithms
under varying settings on the 2019 TREC Deep Learning track data.

3.1 Data and Queries
We employ the MSMARCO-v1 passage collection, consisting of around
8.8 million English passages taken from Bing web pages [3]. The
2019 TREC Deep Learning track provided a total of 200 queries, 43
of which were judged for the passage ranking task [10]; we use the
latter as our input log.

3.2 Algorithms and Parameters
To generate a set of representative systems to compare, we apply a
combination of choices. In particular, we use three algorithms, three
rankers, two index orderings, and three heap threshold estimators,
resulting in 36 unique systems. We fix 𝑘 = 10 and pre-quantize
all scores during indexing (such that ranking becomes a simple
sum over impacts) to simplify the experimentation and to avoid a
combinatorial explosion of configurations. We also fixed the index
compression codec to SIMD-BP128 [21].

https://dash.plotly.com/

Profiling and Visualizing Dynamic Pruning Algorithms SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

S E T T INGS

X - A X IS T IC K S

Order
Thresh
Ranker
A lgorithm

H O R IZ O N T A L F A C E T

Order
Thresh
Ranker
A lgorithm

V E R T IC A L F A C E T

Order
Thresh
Ranker
A lgorithm

G R O U P /C O L O U R

Order
Thresh
Ranker
A lgorithm

2 Control panel for
arranging the
graph outputs.

Random BP
0

10k

20k

30k

40k

Random BP Random BP

0

10k

20k

30k

40k

0

10k

20k

30k

40k

Latency [microseconds/query]

Algorithm
WAND

BMW

MaxScore

Menu bar for navigating
between analysis tools.

1GLOBA L COMPA RIS ON QUERY TRACING PER- QUERY STATS

Order Order Order

La
te

n
cy

La
te

n
cy

La
te

n
cy

Ranker=BM25 Ranker=BM25-T5 Ranker=DeepImpact

Thresh=O
racle

Thresh=Q
K

Thresh=N
one

The graph output for one metric (query latency) arranged according to the seings selected in the control panel.3

Figure 1: The global comparison page showing the latency profiles of all possible system configurations. Each component of the page is
labeled with a short explanation. Note that the global comparison page also plots a number of other metrics such as postings scored.

Q U E R Y ID

S E T T INGS

WAND
BMW
MaxScore

O R D E R

Random
BP

T H R E S H

None
QK
Oracle

R A N K E R

BM25
BM25-T5
DeepImpact

QUE R Y DATA

T E R M DATA

QUE R Y T R A C E

GLOBA L COMPA RIS ON QUERY TRACING PER- QUERY STATS

490595
QID

Length (tokens)

Latency (microsec)

Documents Touched

Postings Scored

Document Block Decodes

Freq. Block Decodes

Type

490595

3

2265

21042

35929

10899

8314

Value

rsa

definition

key

Token

2217

1538171

91181

List Length

252

145

222

Upper Bound

Menu bar for navigating
between analysis tools.

The ery Trace tool plots each document scored and the score it achieved
as a point, the heap threshold at each scoring operation (blue line) and
per-term upper-bounds (orange dashed lines) during traversal.

3

4

Statistics display for query,
latency, profiling, and term
level data.

1

A L G O R IT H M

2 Control panel for
toggling between
seings and
configurations.

Figure 2: The Dyno query tracing display showing a visualized trace of the query rsa key definition usingWAND processing, a randomly
ordered index, no threshold estimation, and DeepImpact scoring. Again, each component of the page is labeled with a short explanation.

Algorithms. We make use of three popular rank-safe dynamic
pruning algorithms.MaxScore is a family of dynamic pruning al-
gorithms proposed by Turtle and Flood [48] that make use of list-
wise upper-bound estimations and partial scoring to accelerate
query processing; we use the document-at-a-time version. We also
consider the WAND approach of Broder et al. [6] as well as the
block-max version (BMW) proposed by Ding and Suel [15].WAND,

similar to MaxScore, uses list-wise bounds for pruning, whereas
BMW also relies on block-wise upper-bounds for more accurate
score estimations at the cost of a larger index.

Rankers. Since dynamic pruning algorithms are sensitive to term
score distributions [28, 38], we apply three rankers. BM25 repre-
sents the classical BM25 scoring function [41] over the original

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Zhixuan Li and Joel Mackenzie

corpus with PISA’s BM25 function configured with 𝑘1 = 0.82 and
𝑏 = 0.68. BM25-T53 applies the same formulation and parameters
as above, but over a corpus augmented with queries generated
via the DocT5Query model [22, 37]. DeepImpact represents the
neural term impact estimation model from Mallia et al. [36] which
estimates per-term impacts over a DocT5Query expanded corpus.

Index Orderings. The order in which document identifiers are
assigned can have a large impact on both the compressibility and,
in turn, the efficiency of inverted indexes [4, 26, 43–45]. For sim-
plicity, two index orderings were used. A random ordering simply
permutes the document identifiers of all passages, and indexes them
in the new order. BP ordering represents the current state-of-the-
art approach to document reordering which directly optimizes the
estimated cost of storage across all postings lists [13, 29].

Threshold Estimation. As described in Section 1, dynamic prun-
ing algorithms use cheap score estimations to decide whether a
candidate document is worth a “closer look” — if the estimated
score exceeds 𝜃 , the current threshold of the min-heap, then the
document will be scored. The idea of threshold estimation is to
get the value of 𝜃 as close to its terminal value as possible (but
not over it), allowing more documents to be pruned during the
traversal [35, 39]. Here, we apply three possibilities. First, we do
not apply prediction, and allow the value of 𝜃 to grow organically.
Second, we use the maximum of the 𝑘 th highest per-term scores,
denoted 𝑄𝑘 , which can be computed offline for a fixed set of 𝑘
values [12, 18]. Third, we use an oracle which initializes 𝜃 to its
terminal value, representing the “best case” scenario for a threshold
estimator. We note that while “unsafe” optimizations or estimators
are also possible [9, 46], we do not consider them here.

3.3 Global Comparisons
The first application of Dyno compares systems using a series of
configurable box-and-whisker plots, one for each metric of interest.
The plots can be arranged such that the 𝑥-axis, horizontal and
vertical facets, and the color of the boxes facilitates comparisons
between different dimensions of interest. Figure 1 demonstrates
the global comparison interface, plotting query latency according
to the settings shown in the left panel. In this particular instance,
it is quite clear that the ranker (vertical facet) has the highest net
effect on latency; BP indexes are typically faster than their random
counterparts; and both MaxScore and BMW are more competitive
than WAND on this particular collection. Transforming the plot
allows different comparisons to be made effectively. For example,
to compare the effect of the different threshold estimators, they
could be moved to the group/color option, with the algorithms then
occupying the horizontal facet.

3.4 Query-Level Analysis
To demonstrate query-level analysis, Figure 2 shows the processing
trace for query 490595 “rsa key definition” under a given configura-
tion. From the statistics panel, it is clear that this particular config-
uration yields a latency of around 2,200 microseconds, with around
36,000 postings scored. The visual trace demonstrates that, after an

3While this is not exactly a different ranker, the expansions result in modified term
frequencies, and hence alters the behavior of retrieval algorithms.

initial “dense” period of scoring (over the first 5% of the document
space), the heap threshold exceeds the first single-term bound (cor-
responding to the term “definition” with an upper-bound of 145)
which allows the algorithm to better discern between candidates
worth scoring, and those that can be safely ignored. A similar effect
can be seen at around 82%, where the combination of the terms
“definition” and “key” (with a combined bound of 145 + 222 = 367)
is no longer sufficient to cause a document to be fully scored; after
this point, a document must contain the term “rsa” to be considered
a viable candidate, and hence a much lower density of documents
are scored after this point.

Toggling the configuration then leads to a number of insights.
For example, moving from WAND processing to MaxScore leads to
a 4.1× speedup under this particular configuration, demonstrating
the sensitivity of the choice of algorithm. Even more interesting,
however, is the fact that MaxScore processes 81,000 postings —
more than two times the amount that WAND processes — yet is
over four times faster. This can be explained by examining the other
performance metrics;WAND actually requires more than 4× and
7× the amount of document and frequency blocks to be decoded,
respectively. This indicates that the volume of postings scored may
not be a good proxy for latency [24].

4 CONCLUSION
In this paper we presented Dyno, a framework for profiling and vi-
sualizing inverted index-based dynamic pruning algorithms. Dyno
is designed to simplify performance analysis and system design for
both researchers and practitioners. While we believe that Dyno is
an interesting proof of concept, it has a number of limitations. For
example, Dyno is best viewed on a large, high resolution monitor,
and while it is unlikely to be used on mobile devices, more flexible
support for different window sizes would improve the user experi-
ence. Furthermore, Dyno currently ingests data collected during
dedicated profiling runs from the PISA system; it would be useful
to extend it to a live monitoring scenario, where interactive queries
are being served with real-time profiling. However, it is unclear
whether the computational overhead of profiling is prohibitively
expensive for live deployments.

In future work, we plan to extend the data model to more well-
supported standard such as JSON to facilitate interoperability with
other IR toolkits. It would be interesting to apply our framework to
the analysis of more advanced processing regimes, such as those
which employ distributed or cluster-based querying [1, 17, 20, 30],
multiple index tiers [11], or more accurate upper-bound filtering
and estimation processes [5, 14, 19, 42]. Finally, it would also be
valuable to include information about search effectiveness, as this
would facilitate more robust analysis of unsafe algorithms which
can trade effectiveness for efficiency improvements.

Demo. The live system and video are available at https://dyno.
uqcloud.net/ and https://youtu.be/mQyFOtGvsyw.

Acknowledgment. This work was supported by a University of
Queensland New Staff Research Grant. We thank Maxime Cordeil,
Shengyao Zhuang, Guido Zuccon, and the anonymous reviewers
for their helpful suggestions.

https://dyno.uqcloud.net/
https://dyno.uqcloud.net/
https://youtu.be/mQyFOtGvsyw

Profiling and Visualizing Dynamic Pruning Algorithms SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

REFERENCES
[1] I. S. Altingovde, E. Demir, F. Can, and O. Ulusoy. Incremental cluster-based

retrieval using compressed cluster-skipping inverted files. ACM Trans. Inf. Sys.,
26(3), 2008.

[2] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early
termination. In Proc. SIGIR, pages 35–42, 2001.

[3] P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A. Mc-
Namara, B. Mitra, T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Tiwary, and
T. Wang. MS MARCO: A human generated MAchine Reading COmprehension
dataset. arXiv:1611.09268v3, 2018.

[4] D. Blandford and G. Blelloch. Index compression through document reordering.
In Proc. DCC, pages 342–352, 2002.

[5] E. Bortnikov, D. Carmel, and G. Golan-Gueta. Top-k query processing with
conditional skips. In Proc. WWW, pages 653–661, 2017.

[6] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query
evaluation using a two-level retrieval process. In Proc. CIKM, pages 426–434,
2003.

[7] K. Chakrabarti, S. Chaudhuri, and V. Ganti. Interval-based pruning for top-𝑘
processing over compressed lists. In Proc. ICDE, pages 709–720, 2011.

[8] M. Crane, A. Trotman, and R. O’Keefe. Maintaining discriminatory power in
quantized indexes. In Proc. CIKM, pages 1221–1224, 2013.

[9] M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman. A comparison of
document-at-a-time and score-at-a-time query evaluation. In Proc. WSDM, pages
201–210, 2017.

[10] N. Craswell, B. Mitra, E. Yilmaz, D. Campos, and E. M. Voorhees. Overview of
the TREC 2019 deep learning track. In Proc. TREC, 2021.

[11] C. M. Daoud, E. S. deMoura, D. Fernandes, A. S. da Silva, C. Rossi, and A. Carvalho.
Waves: A fast multi-tier top-𝑘 query processing algorithm. Inf. Retr., 20(3):292–
316, 2017.

[12] L. L. S. de Carvalho, E. S. de Moura, C. M. Daoud, and A. S. da Silva. Heuristics
to improve the BMW method and its variants. Journal of Information & Data
Management, 6(3):178–191, 2015.

[13] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. Com-
pressing graphs and indexes with recursive graph bisection. In Proc. KDD, pages
1535–1544, 2016.

[14] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. A candidate filtering mechanism
for fast top-𝑘 query processing on modern CPUs. In Proc. SIGIR, pages 723–732,
2013.

[15] S. Ding and T. Suel. Faster top-𝑘 document retrieval using block-max indexes.
In Proc. SIGIR, pages 993–1002, 2011.

[16] A. Grand, R. Muir, J. Ferenczi, and J. Lin. From MaxScore to Block-Max Wand:
The story of how Lucene significantly improved query evaluation performance.
In Proc. ECIR, pages 20–27, 2020.

[17] F. Hafizoglu, E. C. Kucukoglu, and I. S. Altingovde. On the efficiency of selective
search. In Proc. ECIR, pages 705–712, 2017.

[18] A. Kane and F. W. Tompa. Split-lists and initial thresholds for WAND-based
search. In Proc. SIGIR, pages 877–880, 2018.

[19] O. Khattab, M. Hammoud, and T. Elsayed. Finding the best of both worlds: Faster
and more robust top-k document retrieval. In Proc. SIGIR, pages 1031–1040, 2020.

[20] Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. Does selective search benefit
from WAND optimization? In Proc. ECIR, pages 145–158, 2016.

[21] D. Lemire and L. Boytsov. Decoding billions of integers per second through
vectorization. Soft. Prac. & Exp., 45(1):1–29, 2015.

[22] X. Ma, R. Pradeep, R. Nogueira, and J. Lin. Document expansions and learned
sparse lexical representations for MSMARCO V1 and V2. In Proc. SIGIR, 2022.

[23] C. Macdonald, R. McCreadie, R. L. T. Santos, and I. Ounis. From puppy to maturity:
Experiences in developing Terrier. In Proc. OSIR at SIGIR 2012, 2012.

[24] C. Macdonald, N. Tonellotto, and I. Ounis. Learning to predict response times
for online query scheduling. In Proc. SIGIR, pages 621–630, 2012.

[25] J. Mackenzie and A. Moffat. Examining the additivity of top-𝑘 query processing
innovations. In Proc. CIKM, pages 1085–1094, 2020.

[26] J. Mackenzie, A. Mallia, M. Petri, J. S. Culpepper, and T. Suel. Compressing
inverted indexes with recursive graph bisection: A reproducibility study. In Proc.
ECIR, pages 339–352, 2019.

[27] J. Mackenzie, Z. Dai, L. Gallagher, and J. Callan. Efficiency implications of term
weighting for passage retrieval. In Proc. SIGIR, pages 1821–1824, 2020.

[28] J. Mackenzie, A. Mallia, A. Moffat, and M. Petri. Accelerating learned sparse
indexes via term impact decomposition. In Findings of the ACL: EMNLP 2022,
pages 2830–2842, 2022.

[29] J. Mackenzie, M. Petri, and A. Moffat. Tradeoff options for bipartite graph
partitioning. IEEE Trans. Know. & Data Eng., 2022. To appear.

[30] J. Mackenzie, M. Petri, and A. Moffat. Anytime ranking on document-ordered
indexes. ACM Trans. Inf. Sys., 40(1):13.1–13.32, 2022.

[31] J. Mackenzie, A. Trotman, and J. Lin. Efficient document-at-a-time and score-at-
a-time query evaluation for learned sparse representations. ACM Trans. Inf. Sys.,
41(4), 2023.

[32] A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. Faster
BlockMax WAND with variable-sized blocks. In Proc. SIGIR, pages 625–634, 2017.

[33] A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. PISA: Performant indexes
and search for academia. In Proc. OSIRRC at SIGIR 2019, pages 50–56, 2019.

[34] A. Mallia, M. Siedlaczek, and T. Suel. An experimental study of index compression
and DAAT query processing methods. In Proc. ECIR, pages 353–368, 2019.

[35] A. Mallia, M. Siedlaczek, M. Sun, and T. Suel. A comparison of top-𝑘 threshold
estimation techniques for disjunctive query processing. In Proc. CIKM, pages
2141–2144, 2020.

[36] A. Mallia, O. Khattab, N. Tonellotto, and T. Suel. Learning passage impacts for
inverted indexes. In Proc. SIGIR, pages 1723–1727, 2021.

[37] R. Nogueira and J. Lin. From doc2query to docTTTTTquery, 2019. Unpublished
technical report.

[38] M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic of WAND. In Proc.
Aust. Doc. Comp. Symp., pages 58–65, 2013.

[39] M. Petri, A. Moffat, J. Mackenzie, J. S. Culpepper, and D. Beck. Accelerated query
processing via similarity score prediction. In Proc. SIGIR, pages 485–494, 2019.

[40] G. E. Pibiri and R. Venturini. Techniques for inverted index compression. ACM
Comp. Surv., 53(6):125.1–125.36, 2021.

[41] S. E. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25
and beyond. Found. Trnd. Inf. Retr., 3:333–389, 2009.

[42] D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized top-𝑘 processing with global
page scores on block-max indexes. In Proc. WSDM, pages 423–432, 2012.

[43] W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann, and C.-P. Chung. Inverted file compression
through document identifier reassignment. Inf. Proc. & Man., 39(1):117–131, 2003.

[44] F. Silvestri. Sorting out the document identifier assignment problem. In Proc.
ECIR, pages 101–112, 2007.

[45] N. Tonellotto, C. Macdonald, and I. Ounis. Effect of different docid orderings on
dynamic pruning retrieval strategies. In Proc. SIGIR, pages 1179–1180, 2011.

[46] N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and effective retrieval using
selective pruning. In Proc. WSDM, pages 63–72, 2013.

[47] N. Tonellotto, C. Macdonald, and I. Ounis. Efficient query processing for scalable
web search. Found. Trnd. Inf. Retr., 12(4-5):319–500, 2018.

[48] H. R. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Inf.
Proc. & Man., 31(6):831–850, 1995.

[49] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked
retrieval. In Proc. SIGIR, pages 105–114, 2011.

[50] E. Yafay and I. S. Altingovde. Caching scores for faster query processing with
dynamic pruning in search engines. In Proc. CIKM, pages 2457–2460, 2019.

[51] P. Yang, H. Fang, and J. Lin. Anserini: Reproducible ranking baselines using
lucene. J. Data Inf. Qual., 10(4):16.1–17.20, 2018.

[52] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comp. Surv.,
38(2):6.1–6.56, 2006.

	Abstract
	1 Introduction
	2 Dyno: System Description
	2.1 Overview
	2.2 Generating Profiling Data
	2.3 Visualization

	3 Demonstration
	3.1 Data and Queries
	3.2 Algorithms and Parameters
	3.3 Global Comparisons
	3.4 Query-Level Analysis

	4 Conclusion
	References

