
Query Driven Algorithm Selection in Early Stage Retrieval
Joel Mackenzie

RMIT University

Melbourne, Australia

joel.mackenzie@rmit.edu.au

J. Shane Culpepper

RMIT University

Melbourne, Australia

shane.culpepper@rmit.edu.au

Roi Blanco
∗

Amazon

Barcelona, Spain

roiblan@amazon.com

Matt Crane

University of Waterloo

Waterloo, Canada

matt.crane@uwaterloo.ca

Charles L. A. Clarke

University of Waterloo

Waterloo, Canada

claclark@gmail.com

Jimmy Lin

University of Waterloo

Waterloo, Canada

jimmylin@uwaterloo.ca

ABSTRACT

Large scale retrieval systems often employ cascaded ranking archi-

tectures, in which an initial set of candidate documents is iteratively

refined and re-ranked by increasingly sophisticated and expensive

ranking models. In this paper, we propose a unified framework for

predicting a range of performance-sensitive parameters based on

minimizing end-to-end effectiveness loss. The framework does not

require relevance judgments for training, is amenable to predict-

ing a wide range of parameters, allows for fine tuned efficiency-

effectiveness trade-offs, and can be easily deployed in large scale

search systems with minimal overhead. As a proof of concept, we

show that the framework can accurately predict a number of per-

formance parameters on a query-by-query basis, allowing efficient

and effective retrieval, while simultaneously minimizing the tail

latency of an early-stage candidate generation system. On the 50

million document ClueWeb09B collection, and across 25,000 queries,

our hybrid system can achieve superior early-stage efficiency to

fixed parameter systems without loss of effectiveness, and allows

more finely-grained efficiency-effectiveness trade-offs across the

multiple stages of the retrieval system.

ACM Reference Format:

Joel Mackenzie, J. Shane Culpepper, Roi Blanco, Matt Crane, Charles L. A.

Clarke, and Jimmy Lin. 2018. Query Driven Algorithm Selection in Early

Stage Retrieval. In WSDM 2018: The Eleventh ACM International Conference
onWeb Search and DataMining , February 5–9, 2018, Marina Del Rey, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3159652.3159676

1 INTRODUCTION

The competing goals of maximizing both efficiency and effective-

ness in large scale retrieval systems continue to challenge builders

of search systems as the emphasis in modern architectures evolves

towards multi-stage retrieval [40]. Many old efficiency problems

∗
This work was conducted while this author was at RMIT University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00

https://doi.org/10.1145/3159652.3159676

become new again in the increasingly complex cascade of docu-

ment re-ranking algorithms being developed. For example, research

groups can focus on early stage retrieval efficiency [4, 16, 54], bal-

ancing feature costs [12, 53, 56], or improving the performance of

the learning-to-rank algorithms [5, 26, 34, 35, 37].

While great strides have been made in all of these areas, gaps

remain in our understanding of the delicate balance between effi-

ciency and effectiveness in each “stage” of the re-ranking cascade.

One of the most significant limitations preventing further progress

is training data availability. While query sets to measure efficiency

in various collections are plentiful, the costs of gathering relevance

judgments in order to measure effectiveness limit the number of

topics available for more detailed trade-off analyses.

In this work, we explore how to apply a reference list frame-

work [13, 45, 46, 55] to alleviate this problem. We leverage a new

labelling framework to build machine-learned models capable of

predicting candidate set sizes, algorithm aggressiveness parame-

ters, and query latency to balance efficiency and effectiveness on a

query-by-query basis. In particular, we focus on using this unified

framework to reduce the early-stage tail latency [18, 24, 25, 27],

which are queries with a 95th percentile (or greater) response time

in the candidate generation stage. We explore three important re-

search questions:

Research Question 1 (RQ1): What is the best way to use reference
lists to accurately perform dynamic parameter predictions in early
stage retrieval on a per-query basis?
Research Question 2 (RQ2): What is the relationship between tail
latency and index traversal algorithms, and can our new prediction
framework be used to reliably provide worst case guarantees on first-
stage query efficiency?
Research Question 3 (RQ3): What combination of predictors will
lead to efficient first-stage retrieval, minimizing the number of can-
didate documents returned in the first stage (and thus making later
stages more efficient), while also minimizing the effectiveness loss in
final stage re-ranking?
In answering these questions, our research contributions include:

(1) A unified framework that can be used to predict a wide variety

of performance-sensitive parameters in multi-stage retrieval

systems, which can be trained without requiring relevance judg-

ments.

(2) A pragmatic, yet highly tunable and easy to implement ap-

proach for parameterizing search systems on a per-query basis.

https://doi.org/10.1145/3159652.3159676
https://doi.org/10.1145/3159652.3159676

(3) A pathway to more fine-tuned per-query optimization tech-

niques, and the tools necessary to implement and test systems

leveraging these ideas.

We achieve these goals using three ideas. First, we exploit the idea of

query efficiency prediction and static pre-retrieval features to build

a unified prediction framework. Next, we explore the relationship

between the number of documents returned in a top-k candidate

set and the efficiency of the index traversal algorithm. Finally, the

efficiency predictors are integrated with an effectiveness loss mini-

mization prediction. Together, this series of “Stage-0” pre-retrieval

predictions produces a pipeline that allows fine-grained efficiency-

effectiveness trade-offs in an existing multi-stage retrieval system.

2 BACKGROUND AND RELATEDWORK

Efficient Query Processing. Efficient query processing can be

attained through a range of index organizations and traversal strate-

gies based on the inverted index data structure [59]. Document-at-a-

time (DaaT) query processing relies on postings lists being sorted

in ascending order of the document identifiers. At query time, a

pointer is set at the beginning of each postings list. Once the current

document has been evaluated, the pointers are forwarded to the

next document in the lists. An efficient method for disjunctive DaaT
processing is theWeak-AND (Wand) algorithm [8]. Wand is now

a well understood algorithm used for a wide variety of different

search tasks [4, 14, 21, 38, 41, 47].

Ding and Suel [20] (and at a similar time, Chakrabarti et al.

[10]) explored an improved version of Wand named Block-Max
WAND (Bmw). The key observation in Bmw is that since many

index compression algorithms are block-based [30, 58], skipping

can be achieved at the block level, thus saving an entire block

decompression. Further enhancements to Bmw have been made in

the literature, usually by using additional auxiliary structures that

improve the efficiency of query processing at the cost of additional

space consumption [19, 42, 43].

Another entirely different method for top-k query processing

is the score-at-a-time (SaaT) approach. Anh et al. [2] made the

observation that the term weight for any given document could be

pre-computed and stored, rather than the term frequencies. Since

the termweights are typically floating point numbers, they are quan-

tized into integer values to facilitate compression [2], the range

of which impacts both effectiveness and efficiency [15]. For SaaT

processing, each postings list is sorted by decreasing impact score,

which allows the most high scoring documents for each term to be

processed first, and can allow for early termination without sacrific-

ing effectiveness. Recently, Lin and Trotman [32] introduced Jass,

a modern SaaT algorithm which can be used for anytime retrieval,
making it suitable for use in time-constrained environments and

for controlling tail latency.

Tail Latency. The tail latency of a system corresponds to the re-

sponse times occurring above some high percentile, such as the

95th, 99th or even the 99.99th percentile [27, 57]. As collections

grow larger, systems must scale accordingly. As systems become

more complex, the probability of increasing the tail latency also in-

creases [18], particularly for distributed architectures where end-to-

end latency is often bound by the slowest component. Reducing the

Query TermsInverted Lists

Simple
Scoring
Function

Top-t
documents

22

Acacia

Avenue
DAAT

Reranking
Stages

Fast BOW

SAAT
or

Top-k
documents

t ≤ k

Figure 1: Architecture of a typical multi-stage retrieval system.

Queries are first processed using an efficient bag-of-words retrieval

algorithm. The initial candidate set of k documents then undergoes

a series of re-ranking stages where the candidate pool is shrunk, and

more expensive learning-to-rank algorithms are used to produce

a final set of top-t documents to return to the user, where often

t ≪ k .

tail latency can be addressed through either hardware or software

optimizations, or both. For example, replicating and partitioning

collections [18, 22, 28] allows effective load balancing which can

reduce the system tail latency.

Previous work has attempted to reduce the tail response times in

a range of different contexts. Jeon et al. [25] focus on 99th percentile

tail latency at the level of a single Index Server Node (ISN) by pre-

dicting long running queries, and running them in parallel. Queries

that are not predicted as long running are processed sequentially,

which avoids the overhead cost of parallelization. Another recent

work targets reducing the extreme tail latency (at the 99.99th per-

centile) [24, 27]. This target is achieved through Dynamic, Delayed,
Selective (DDS) prediction. DDS prediction works as follows. First,

a new query is processed for a short time, such as 20ms, and dy-

namic features are collected from this initial processing. Then, new

dynamic features (and, some additional static features) are used to

predict whether the query is a long running query. If so, then the

query will be accelerated using parallelization. The prediction error

is also estimated, and is used to improve coverage of mispredicted

true long running queries.

Multi-Stage Search Architectures. Multi-stage retrieval has be-

come the dominant model in modern web search systems [3, 4, 9, 36,

37, 40]. In this approach, a set of candidate documents is generated

that is likely to be relevant to a query, and then in one or more

stages, the document sample is iteratively reduced and reordered us-

ing a series of increasingly expensive machine learning techniques.

Since re-ordering can be computationally expensive and is sensitive

to the number of documents that must be reordered, minimizing

the size of the candidate set is an important problem [9, 12, 36, 48].

Figure 1 shows a typical multi-stage retrieval architecture. A fast

bag-of-words retrieval algorithm produces a top-k candidate set.

This initial set of documents is then re-ranked one or more times

using a learning-to-rank algorithm to produce a final output set of t
documents, where t ≤ k , and can be t ≪ k in some configurations.

Efficiency remains an important problem in multi-stage retrieval,

with papers focused on cascaded ranking [12, 40, 56], early exit

optimizations [9, 17], and efficient candidate generation [4, 54].

Recently, Wang et al. [54] proposed a fast candidate generation

framework which opts to build a two-layer index. The bottom layer

is the standard inverted index, and the top layer is a single or dual-

term auxiliary structure which stores a subset of the bottom layer

documents, sorted by impact score. At query time, a prefix of the

top layer is accessed, which is then refined by accessing the lower

layer of the index, which was shown to be efficient in practice.

Such an approach could easily be used within our framework as

it essentially attempts to improve the efficiency of the candidate

generation phase of multi-stage retrieval, but we leave this as future

work.

Reference List Evaluation in Multi-Stage Retrieval. One obvi-

ous question arises when trying to measure trade-offs in multi-stage

retrieval systems – how can we quantify the impact on effectiveness

when modifying different components of the search system? One

approach is to simply make changes to the system, and re-compute

a standard information retrieval metric such as average precision

(AP), expected reciprocal rank (ERR), normalized discounted cu-

mulative gain (NDCG), or rank biased precision (RBP) on the last

stage result [11, 39]. However, this is unwieldy in practice, as it can

be very difficult to identify exactly what changes are resulting in

effectiveness differences.

A more compelling approach is to compute intermediate results

at different stages of re-ranking, and measure the differences be-

tween the two. For example, in a simple two-stage system, we could

generate the top-k list for both stages and somehow measure the

similarity or difference between the two runs. We refer to this as

a reference list comparison. There is now a large body of work on

using reference lists for evaluation [13, 45, 46, 55]. In this work, we

use Maximized Effectiveness Difference (MED) where the exact gain
function used to compute the difference can depend on any utility-

based evaluation metric, such as ERR, DCG, or RBP [46]. MED has

the additional advantage that if partial judgments are available for

any of the queries, the information can be used directly for the final

comparison.

3 METHODOLOGY

Problem Definition. First, we define the problem we aim to solve.

Given a query q, a series of re-ranking stages R, and a target evalu-

ation metricM for the final stage, how can we predict both k and

the processing algorithmA for the initial (bag-of-words) stage such

that k , processing time t , and effectiveness loss L are minimized

without requiring relevance judgments?

Labelling for Predictionwithout RelevanceAnnotations.We

now turn to answering RQ1, by proposing a reference list model

for learning efficiency parameters on a query-by-query basis. Since

we wish to learn how to predict k (and other performance parame-

ters) without relevance judgments, we employ a labelling algorithm

based on theMED reference list approach. Given a gold-standard
ranking for a query (as defined by an effective ranking model), and

Algorithm 1: Finds the smallest value of k such that effec-

tiveness loss is minimized between a bag-of-words candi-

date list and a final stage re-ranked list for a given query.

Input :A bag-of-words run Da
, a corresponding

re-ranked list Db
(the gold-standard), and a

desired MED threshold, ϵ .
Output :The smallest value of k such that

MED(TopkPrefix(Da ,k),Db) < ϵ .
currentMED← 1.0

k ← 0

candidateSet← ∅
while currentMED > ϵ do

k ← k + 1
candidateSet.Append(DocAtRankk(Da ,k))

currentMED← MED(candidateSet,Db)
end

return k

a corresponding bag-of-words candidate list, we iteratively measure

theMED on an increasing prefix of the candidate list with respect to

the gold-standard ranking. The goal is to find the shortest prefix of

the candidate list that would not result in significant effectiveness

loss after re-ranking. Algorithm 1 shows the psuedocode for this

labelling algorithm. Once the optimal k is found, it can be used as

a label for training. We note that our psuedocode is defined using a

naïve (linear) approach for simplicity. In practice, a binary search

can be conducted to yield the optimal k more efficiently. For our

MED calculation, we use only MEDRBP with a small target thresh-

old of ϵ = 0.001 as we wish to aggressively minimize effectiveness

loss. Clarke et al. [13] showed that other common utility-based

metrics could also easily be used such as MEDERR and MEDDCG,

but we do not explore that option in this work.

Generating Gold Standard Rankings. In order to accurately la-

bel parameter values using a reference list approach, we need a

ground truth which represents an idealized last stage run over a

large corpus of queries. This idealized last stage represents the

trusted reference list for which all comparisons can be made. In

order to build a competitive “last stage” reference list, we train a

Risk-Sensitive LambdaMartmodel using the JForests library [23, 52],

and 687 queries from the 2009 Million Query Track (MQ2009) query

set, which have shallow relevance judgments. A set of 400 com-

monly used LtR features were used in the model, and significant

effectiveness improvements were observed when testing the model

using the 2009 ClueWeb09 Adhoc query set.

Following Clarke et al. [13], we also tested our entire prediction

framework using the uogTRMQdph40 run as a reference list, as it

was one of the top scoring systems that returned results for all of

the Million Query Track topics. We found that all of the results

produced are comparable independent of the reference list used.

The key point is that any reference list can be used as long as it is

consistently “better” than the first stage method being evaluated.

For example, the wins/ties/losses for our URisk model compared

to the Okapi BM25 baseline with NDCG@10 is 33 (0.1793)/6/10

(0.0786), where the numbers in parentheses correspond to the av-

erage differences in score. Building the best reference list is an

interesting problem in its own right, but beyond the scope of this

work. In the interest of succinctness, we only report results from

our own end-to-end system here.

Parameter Prediction using Regression. Recently, Culpepper

et al. [16] described an effective approach of dynamically predicting

k while minimizing effectiveness loss. The key idea was to use

the reference list methodology described above to build ground

truth labels to train a classifier. However, their approach has a few

drawbacks. First, the cascade classifier they described is interesting

but unconventional in that it requires multiple predictions to be

made, depending on the final k . Fewer predictions are required for

small k , but up to 8 independent predictions are required for large k .
Secondly, the problem they describe is really a regression problem in

practice. Using regression allows an exact k to be predicted instead

of an approximate cutoff, which translates into fewer documents

being re-ranked in later stages of the retrieval system.

Commonly, regression methods estimate the conditional expec-

tation of a target dependent variable y given the independent vari-

ables (or features) x. This implies that the method approximates the

average value of the dependent variable when the independent vari-

ables are fixed. Given training data of the form (x1,y1), . . . , (xn,yn)
methods based on least squares try to optimize the loss function

L(x,y) = 1

n
∑n
i=1

1

2
(xi − yi)2, which results in a good estimator for

the mean E[y |x].
So, the obvious way to reproduce their work is to use a similar

feature set, and compute the exact k needed for each query that

achieves a very small expected MED loss, say, ϵ < 0.001, and

use a random forest to produce the predictions. When we build

this training set, one immediate problem becomes apparent – the

ground truth labels do not follow a standard distribution, but an

out-of-the-box regression algorithm does. Figure 2 shows three

different distributions – the true distribution of k in the ground

truth set (Oracle), the random forest prediction (RF0.001), and a

quantile regression prediction (QRτ), which is described now.

A pitfall of standard regression methods is that they may be-

come unstable under heavy-tailed distributions due to the dominant

effects of outliers, or more precisely, when samples from the tail

of the distribution have a strong influence on the mean. How to

cope with this problem has been studied in the context of robust
estimation. These estimators embody a family of methods designed

to be more resilient to the data generation process by not following

the underlying assumptions behind the regressor; in the context of

least squares, this would be errors being uncorrelated and having

the same variance.

One simple way of dealing with the outlier problem is quantile
regression, which estimates either the conditional median or other

quantiles of the response variable. If y has a cumulative distribu-

tion of Fy (z) = p(y ≤ z) then the τ -th quantile of y is given by

Qy (τ) = F−1y = inf{z : Fy (z) ≥ τ }. To learn a regressor that mini-

mizes a τ value, we define the loss function ξτ (y) = y(τ −I{y < 0})

where I{·} is the indicator function. Therefore, τ -th quantile re-

gression estimates the conditional τ -th quantile F−1y |x(τ), or we want

0

1 × 10−4

2 × 10−4

3 × 10−4

4 × 10−4

0 2,500 5,000 7,500 10,000
k

D
en

si
ty

 o
f

q
u

er
ie

s

Predictor
Oracle

QR0.55

RF0.001

Figure 2: A comparison of the distributions of actual k versus

predicted k when using a Random Forest regression and a Quantile

Regression in first stage retrieval for the 26,959 queries from the

MQ2009 TREC Task. Note that the Random Forest uses a training

value of ϵ = 0.001, whereas the best-fit distribution for the Quantile

Regression was τ = 0.55 for k .

an estimate
ˆfτ such that p(y < ˆfτ (x)) = τ :

ˆfτ = argmin

f ∈Fτ

n∑
i=1

ξτ (yi − f (xi)) = (1)

argmin

f ∈Fτ

(1 − τ)
∑

yi<f (xi)

|yi − f (xi)| + τ
∑

yi ≥f (xi)

|yi − f (xi)|
 , (2)

where Fτ is a predetermined class of functions.

A robust regression method is random forests (RF), which build

several decision trees using attribute bagging. In a nutshell, the

algorithm samples with replacement the training data B times and

trains several decision trees fb using only each portion of the data.

The final prediction for an incoming new query is averaged from

all the regressors
ˆf = 1

B
∑B
i=1 fB (x). Subsampling has the practical

effect of decreasing the variance of the model, without increasing

its complexity, given that even if the predictions of a single tree are

highly sensitive to noise, the average of many trees is not (as long

as the trees are not correlated). Bootstrapping achieves this effect

by training each tree with a different randomized subsample.

When the individual trees fb are learned, the building procedure

creates tree nodes that branch data down the tree; in order to reduce

the model variance, only a few features are candidates for splitting

at each round. This mitigates the effect that happens when, if just

a few features are very strong predictors for y, these features will
be selected in many of the B trees, which become correlated.

We deploy the quantile regression within the same tree frame-

work using gradient boosting regression trees (GBRT). In this case,

each tree re-fits the training data using the residuals (gradients) of

the training data with respect to the ξτ loss function, and a per-tree

weight is calculated using line search. The final decision is a linear

combination of the weighted prediction of the tree ensemble.

Parameter Prediction Features. For predicting the performance

parameters, we used a similar set of features as Culpepper et al. [16].

These features are based on aggregating statistics for each postings

list (such as maximum scores, harmonic/arithmetic mean/median

scores, and so on) from a range of similarity functions, along with

query specific features such as query length, max score of query

terms, and many more. In addition to the TF·IDF, BM25 and query

likelihood used by Culpepper et al. [16], we also build features

using Bose-Einstein, DPH, and DFR similarity functions [1]. We

also added the geometric mean as an aggregation statistic for each

of these similarity functions. We used a total of 147 features for

predicting parameters, and refer the reader to thework of Culpepper

et al. [16] for a more detailed description of these features.

Experimental Setup. All experiments were executed on an idle

24-core Intel Xeon E5-2690 with 512GB of RAM hosting RedHat

RHEL v7.2. ATIRE [50] was used to parse and index the ClueWeb09B

collection, which was stopped using the default Indri stoplist, and

stemmed using an s-stemmer. Timings were conducted using pub-

licly available implementations of Bmw
1
and Jass,

2
which use QMX

compression [49, 51] and the BM25 scoring model. Each query is

processed 5 times, and the average of the 5 runs is reported. Box-

plots are standard Tukey plots, and diamonds in each box denote

the mean value. For the prediction tasks, we use the 2009 Million

Query Track queries. Single term queries were filtered from all

test, train, and validation sets, as they can be answered trivially by

taking the first k documents from the relevant postings list of the

impact-ordered ISN. In addition, we filtered out queries which con-

tained out-of-vocabulary terms, and the queries which were used

to train the URisk gold-standard system, resulting in a set of 26,959

unique queries. For all predictions, queries were randomly assigned

to 10 folds, and standard 10 fold cross validation was performed to

produce the query predictions.

4 PRELIMINARY EXPERIMENTS

The improved approach to predicting k in first stage retrieval (Fig-

ure 2) is a promising first step to achieving efficient results without

sacrificing effectiveness. However, assuming that the performance

of Wand-based algorithms in the first stage is a function of k may

not be correct in practice [14].

Tail-Latency in DaaTAlgorithms. Crane et al. [14] showed that

when using Wand and Bmw, outlier response times can occur at

any k cutoff, making performance guarantees hard to enforce in

production systems. The alternative to using Wand or Bmw in

the first stage retrieval is to use a SaaT algorithm such as Jass.

Unfortunately, this is not an entirely satisfactory answer either as

most of the performance gains in Jass come from using aggressive

early termination, which can hurt effectiveness when the number

of documents that must be passed to the next stage must also

be minimized. So, rank safety is yet another confounding factor.

DaaT and SaaT processing algorithms can sacrifice effectiveness

for efficiency by relaxing the rank-safety constraint. For example,

Jass allows a parameter ρ to be set which bounds the maximum

number of postings to score per query, and variants of Wand can

use a parameter F which induces more aggressive skipping during

1
http://github.com/JMMackenzie/Quant-BM-WAND

2
http://github.com/lintool/JASS/

0.1

1

10

100

1,000

2,000 5,000 10,000
k

T
im

e
[m

s]

System
BMW1.0

BMW1.2

JASS1b

JASS5m

Figure 3: Efficiency comparison of the 26,959 queries from the

MQ2009 TREC Task using both aggressive and rank-safe versions

of Bmw and Jass. Subscripts denote the aggression parameters (F
for Bmw and ρ for Jass).

postings list traversal. So, there is a trade-off between retrieval

depth k and rank safety in a pure efficiency sense. This relationship

was previously explored by Tonellotto et al. [48], who also used

a query difficulty prediction framework to solve the problem. We

build on this idea in this work, but also account for the fact that

using onlyWand-based algorithms can still result in high percentile

latencies. We can see that boosting F alone does indeed make Bmw

faster in Figure 3, but the high tail latency remains.

Our next task is to explore the likelihood of long-running queries

when using theMQ2009 topic set. Crane et al. [14] performed a com-

parative analysis with the UQV [6] query set and the ClueWeb12B

document collection with fixed values of k . We reproduce their

work here across our own query set and fixed k values. Figure 3

shows the breakdown of all 26,959 queries across a number of fixed

values of k , selected as appropriate sizes for an LtR system [36]. Sim-

ilar to Crane et al., we observe that the exhaustive Bmw algorithm

is superior to the exhaustive Jass algorithm, but the aggressive

Jass traversal (with the recommended 10% heuristic) has a much

lower tail latency. On the other hand, the aggressive Bmw traversal

does improve the mean and median times, but does not adequately

reduce the high percentile latency. Note that we selected the value

for the heuristic, F = 1.2, based on other work that shows that

more aggressive approaches result in reduced effectiveness [13]. It

is also noteworthy that the exhaustive Bmw traversal has a faster

median time than the aggressive Jass traversal when k ≤ 5,000.

To further explore the relationship between the tail latency and

the index traversal algorithm (RQ2), we do a simple overlap analysis

on the slowest running 5% of queries for each algorithm. Table 1

shows the percentage of the tail latencies that overlap between each

system,wherek = 2,000. Exact Jass, exact Bmwand aggressive Bmw

tend to share similar queries in the slowest running 5%. However,

we note that the aggressive Jass traversal tends to share only a small

percentage of the tail latencies that occur in the other systems.

In light of this new evidence, a pragmatic hypothesis emerges:

Can we somehow combine the best properties of Jass and Bmw to

create a hybrid approach that captures the best of both worlds?

http://github.com/JMMackenzie/Quant-BM-WAND
http://github.com/lintool/JASS/

Bmw1.1 Bmw1.2 Jass
1b Jass5m

Bmw1.0 86.0 61.7 56.2 16.7

Bmw1.1 - 67.4 53.1 18.3

Bmw1.2 - - 42.3 24.2

Jass
1b - - - 8.0

Table 1: The percentage overlap of queries that fall in 95 ≤ x ≤ 100

percentile efficiency band for k = 2,000. Clearly, making Bmw

more aggressive may improve timings, but outliers are still present.

On the other hand, it is less common for Jass and Bmw to have

overlapping tail queries, especially when a non-exhaustive ρ value

is used.

Algorithm 2: Candidate generation pipeline based on pre-

dicting k

Input :A query q, a regressor Rk that predicts the

required k for q, a regressor Rρ that predicts the

required ρ for Jass up to a maximum ρ value ρmax,

and a k-threshold Tk
Output :A set of candidate documents, C
C ← ∅
Pk ← Rk (q)
if Pk > Tk then

Pρ ← Rρ (q)
C ← ISNJass(q, Pk , Pρ)

else

C ← ISNBmw(q, Pk)
end

return C

5 HYBRID ARCHITECTURE

The first major difference in our approach with respect to ‘standard’

systems is that we opt to build a hybrid architecture. Work on

distributed IR has shown that an effective approach to scaling is

to replicate popular indexes [18, 22, 28, 29]. Here, we assume that

we can build ISNs that are optimized for different types of queries.

In other words, when we build replicas, we may opt to build a

document-ordered index (appropriate for DaaT traversal), or an

impact-ordered index (appropriate for SaaT traversal). This idea

is key to our novel framework: Selecting algorithm a ∈ A actually

refers to selecting an ISN to process the query which is configured

to run algorithm a, and ISN selection is already a common problem

in distributed search architectures [7, 27]. In practice, our “Stage-0”

predictions would be performed by the resource selection process

in a large scale distributed IR system.

Based on several observations about the relative performance of

Jass and Bmw, we are now in a position to describe a few different

hybrid approaches to query processing, and to answer RQ2. Our

goal is to limit the disadvantages of each traversal algorithm, and

exploit the desirable properties. Several different variations were

used in our preliminary experiments, and the best is shown here.

The first step in the pipeline is to predict the k cutoff. If k is greater

than the thresholdTk , then proceed to the Jass pipeline as outlined

in Algorithm 2, If Jass is used, a prediction for ρ is made, but

capped at ρmax, which allows us to achieve the desired performance

0

1,000

2,000

3,000

4,000

5,000

0.00 0.05 0.10 0.15 0.20
MED − RBP0.95

M
e
d

ia
n

 k

Predictor

Fixed

Oracle

QR
τ

RF
ε

Figure 4: MEDRBP versus median k for all ϵ thresholds between
0.001 and 0.200 when using a Random Forest regression, and for

all τ values between 0.10 and 0.75 with ϵ = 0.001 for Quantile

Regression, in first stage retrieval for the 26,959 queries from the

MQ2009 TREC Task. Note that the Quantile Regression clearly

improves the median k (compared with Random Forests) without

negatively affecting the mean k .

guarantees. In our experiments, ρmax = 5 million postings as this

requires less than 200 ms on our current hardware configuration,

and does not result in a significant loss of effectiveness for early

precision metrics across ClueWeb09B [32]. The remaining queries

are processed using Bmw with rank-safety. We also experimented

with a pipeline which predicted the run-time of the incoming query

(as well as k), and used Jass if the predicted run-time was greater

than 200ms, but its performance is comparable to the simpler model,

so we do not report it in the interest of space.

6 EXPERIMENTS

Wenow look at the various predictions that are necessary to achieve

our performance goals. Our performance requirement for effective-

ness is a MED score that is low enough to result in no measurable

effectiveness difference for the target metric. Our performance re-

quirement for efficiency targets reducing high percentile tail latency

in the candidate generation stage, while also attempting to reduce

the size of both k and ρ in a query dependent way.

Predicting k . First, we validate that our new approach to k predic-

tion using quantile regression is effective. Using our newly devised

regression technique, we can compare the efficiency and effective-

ness trade-offs between the size of the candidate retrieval set k ,
and the expected effectiveness loss MEDRBP. Figure 4 shows the

predictive power of a random forest (RFε) and quantile regression

(QRτ) when compared to the oracle results for the MEDRBP target

ϵ = [0.001, 0.20] and to using a fixed cutoff for all queries. Since

the distribution of the true k values is skewed for the queries as

shown in Figure 2, presenting the results using the median more

accurately captures the trade-offs.

Predicting ρ. Based on the lessons learned when attempting to

build a robust prediction framework for k , we now turn our atten-

tion to the aggressiveness parameter ρ in Jass. Previous work has

0

2 × 10−7

4 × 10−7

6 × 10−7

0 2.5 × 106 5.0 × 106 7.5 × 106 1.0 × 107

ρ

D
en

si
ty

 o
f

q
u

er
ie

s

Predictor
Oracle

QR0.45

RF0.001

Figure 5: A comparison of the distributions the actual ρ vs the

predicted ρ when using a Random Forest regression and a Quan-

tile Regression in first stage retrieval for the 26,959 queries from

the MQ2009 TREC Task. The best-fit distribution for the Quantile

Regression was τ = 0.45 for ρ.

shown that using an exhaustive ρ results in effective top-k retrieval,

however, using a heuristic ρ can give similar effectiveness, yet much

more efficient retrieval [31, 32]. The recommended heuristic value

of ρ is 10% of the size of the collection [32], which is around 5

million for the ClueWeb09B collection. Figure 5 shows the distri-

bution of ρ values required to when targeting a MEDRBP < 0.001,

which aggressively targets no measurable difference in the results

lists between exhaustive and aggressive Jass traversals. Clearly, the

majority of the distribution lies well to the lower side of the 10%

heuristic value. This motivates us to predict ρ on a query-by-query

basis. Again, we deploy both a Random Forest and a Gradient Quan-

tile Regression method as the distribution of ρ is skewed, and build

a suitable find_rho algorithm, similar to find_k (Algorithm 1),

to label the prediction training data.

Figure 6 shows the median predicted ρ values compared with the

fixed and oracle. Both the QR and RF regression methods manage

to improve on the fixed ρ median. Note that when measuring the

MEDRBP for this experiment (and subsequently, training the value

of ρ), the k utilized was the optimal value of k from the previous

experiment. The reason for using this k is that we must fix k , other-
wise our effectiveness scores may change as a result of k , not just
ρ. Indeed, this setting of k also allows us to find the true optimal

MEDRBP for Jass, denoted by the oracle point in Figure 6.

Putting It All Together. Here, we show that by combining all of

our predictions into hybrid first-stage retrieval systems, outlined in

Algorithm 2, we can achieve effectiveness equal to a fixed parameter

system, while controlling various early and late-stage efficiency

parameters, thus answering RQ3.

Figure 7 shows the performance for 4 differentMEDRBP cut-offs:

0.04, 0.06, 0.08, and 0.10. We present Jass
1b , Jass5m and Bmw1.0,

which refer to using a fixed k and ρ for all queries. For these base-

lines, k was selected such that the meanMED value was equivalent

to the target epsilon. We also report the results of the hybrid system

based on Algorithm 2 (Hybrid-k-τ), which uses quantile regression

0

1 × 106

2 × 106

3 × 106

4 × 106

5 × 106

0.00 0.05 0.10 0.15 0.20
MED − RBP0.95

M
e
d

ia
n

 ρ

Predictor

Fixed

Oracle

QR
τ

RF0.001

Figure 6: MEDRBP versus median ρ. The RF model was trained

to target aMEDRBP of 0.001, and the QR model plots the various

quantile points from τ = 0.15 to τ = 0.75. Quantile Regression and

Random Forests behave similarly with respect to the median ρ, but
QR is still preferred as the final predicted ρ distribution fits better

with the idealized results as shown in Figure 5.

0.04 0.06 0.08 0.1

0.1

1

10

100

1,000

MEDRBP

T
im

e
[m

s]

System
BMW-Fixed
Jass-1B-Fixed

Jass-5M-Fixed
Hybrid-k=25

Hybrid-k=45
Hybrid-k=55

Figure 7: The response time for each system for different bands of

MEDRBP in the candidate generation stage. Different configurations

of the hybrid approach can bridge the gap between the Bmw and

Jass systems across differentMED targets, allowing for more finely-

grained trade-offs.

for per-query predictions of both k and ρ. Note that the labels de-
note the τ value which was used to predict k using the QR predictor.

For the ρ prediction, we only show results using the QR predictor

with τ = 45, although we can create more finely grained trade-offs

by employing other values of τ . Additionally, Table 2 shows the me-

dian k , as well as the time characteristics for the systems presented

in Figure 7.

Our results show that our hybrid system both outperform the

equivalent fixed Bmw or Jass approaches for the givenMED targets.

For example, with a target ofMEDRBP = 0.02, our hybrid systems

can achieve a mean and median query response time around 10

ms, and 5 ms below the best fixed system, respectively, while also

requiring a lower median k , which results in additional downstream

System Median k Mean time Median time 95th perc. latency

MED-RBP0.95 = 0.04

Bmw 1598 60.2 34.0 205.6

Jass
1b 1598 178.7 132.7 473.0

Jass5m 2970 75.6 87.1 114.1

Hybrid-k = 25 - - - -

Hybrid-k = 45 1148 50.8 29.3 149.9

Hybrid-k = 55 1660 48.1 31.4 126.9

MED-RBP0.95 = 0.06

Bmw 889 52.7 28.4 183.4

Jass
1b 889 131.2 101.4 368.7

Jass5m 1913 89.9 102.5 139.7

Hybrid-k = 25 631 40.9 25.0 132.8

Hybrid-k = 45 1148 46.2 30.6 121.9

Hybrid-k = 55 1659 45.6 34.5 110.0

MED-RBP0.95 = 0.08

Bmw 578 48.3 25.2 171.2

Jass
1b 578 134.1 98.1 357.4

Jass5m 1324 75.6 86.6 119.8

Hybrid-k = 25 631 29.3 23.3 73.4

Hybrid-k = 45 1148 49.1 38.4 120.9

Hybrid-k = 55 1659 50.3 41.0 109.3

MED-RBP0.95 = 0.10

Bmw 419 44.3 22.6 158.2

Jass
1b 419 154.4 114.4 409.4

Jass5m 959 97.7 111.5 152.2

Hybrid-k = 25 631 25.4 22.1 59.8

Hybrid-k = 45 1148 56.2 45.2 120.7

Hybrid-k = 55 - - - -

Table 2: Summary statistics for k and time. Each sub-table corre-

sponds to a section of Figure 7, and the best values are bold. Our

Hybrid approaches generally outperform the fixed parameter sys-

tems with respect to all time dimensions, while also sometimes

improving the median k value.

efficiency. Although the fixed Jass5m system outperforms our hy-

brids in reducing the tail latency, it must retrieve a larger number of

documents to achieve the same effectiveness target, which has neg-

ative implications on the efficiency of the following stages. As we

relax the MED target, the hybrid systems tend to require a slightly

larger median k than the fixed parameter systems, but tend to per-

form much more efficiently in the early-stage efficiency dimensions.

For example, the Hybrid-k=25 system has a mean, median and 95th

percentile latency that is 18.9, 0.5, and 98.4 ms faster than the best

fixed system, at the cost of requiring 212 more documents per query

(based on the median) when targeting aMEDRBP of 0.10. Note that

we do not consider the time required to make our predictions, but

this cost is an order of magnitude less than the run times being

achieved. Recent work using similar models show a prediction over-

head of < 0.75 ms per prediction [25], and this approach can be

directly applied here.

Validating Robustness. As a final test of robustness, we run both

our hybrid and fixed systems across the 50 (unseen) TREC 2009

Web Track queries. These queries were held out from the train and

test procedures reported in earlier sections, and were used to vali-

date the URisk model (our baseline here). Since these queries only

have judgments to depth 12, we report NDCG@10, ERR@10 and

System MED-RBP0.95 NDCG@10 ERR@10 RBP p = 0.80

BM25 - 0.2055 0.0957 0.3070 (0.1734)

URisk-ideal - 0.3102 0.1354 0.4250 (0.2195)

Fixed (Bmw/Jass
1b) 0.04 0.3027 0.1305 0.4176 (0.2240)

Fixed (Jass5m) 0.04 0.3028 0.1291 0.4005 (0.2503)

Hybrid 0.04 0.3107 0.1357 0.4221 (0.2220)

Fixed (Bmw/Jass
1b) 0.06 0.3052 0.1320 0.4215 (0.2214)

Fixed (Jass5m) 0.06 0.3057 0.1299 0.4028 (0.2531)

Hybrid 0.06 0.3139 0.1361 0.4265 (0.2320)

Fixed (Bmw/Jass
1b) 0.08 0.3082 0.1336 0.4226 (0.2161)

Fixed (Jass5m) 0.08 0.3047 0.1309 0.4066 (0.2484)

Hybrid 0.08 0.3137 0.1353 0.4247 (0.2312)

Fixed (Bmw/Jass
1b) 0.10 0.2945 0.1270 0.4110 (0.2204)

Fixed (Jass5m) 0.10 0.3090 0.1321 0.4114 (0.2449)

Hybrid 0.10 0.3137 0.1352 0.4247 (0.2312)

Table 3: Effectiveness measurements taken across the held-out

query set. No statistical significance was measured between the

hybrid systems with respect to the ideal system (URisk-ideal), using

the two one-sided test with p < 0.05. We used the Hybrid-k = 45

system for this comparison, although the results are not signifi-

cantly different to the other Hybrid parameterizations.

RBP0.80 [33]. For the hybrid systems, we used the same prediction

configuration that was used in the tasks from Figure 7 and Table 2.

Table 3 shows the effectiveness measurements. Remarkably, our

hybrid systems have no loss in effectiveness when computing an

complete end-to-end run. We confirm this observation using a two

one-sided test [44] of equivalence (Tost). For each Tost, we set

the acceptable range of inequality to ±1%. We found that the ideal

system is not statistically significantly different than our hybrid

systems, with p < 0.001. We also observe that our system outper-

forms the fixed-parameter equivalents across these 50 validation

queries, although no statistical significance was detected.

7 CONCLUSION

We presented and validated a unified framework to predict a wide

range of performance-sensitive parameters for early-stage candi-

date retrieval systems usingMED [46] and reference lists as guides

for training. Preliminary experiments show that the DaaT Bmw ap-

proach is efficient but suffers from a comparatively large tail latency,

while the SaaT Jass algorithm does not. A hybrid system based

on this predictive framework was shown to minimize effectiveness

loss while also minimizing query-latency across the candidate gen-

eration stage of the pipeline, providing improved trade-offs with

respect to a standard, fixed-parameter system. Future work will in-

volve exploring the design implications of the hybrid ISN approach,

to quantify the trade-offs involved with the number of replicas

required across the various hybrid parameterizations.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council’s

Discovery Projects Scheme (DP170102231), the Natural Sciences and

Engineering Research Council of Canada, an Australian Govern-

ment Research Training Program Scholarship, and a grant from

the Mozilla Foundation. We thank Luke Gallagher for providing

support with the Learning-to-Rank framework.

REFERENCES

[1] G. Amati and C. J. Van Rijsbergen. 2002. Probabilistic Models of Information

Retrieval Based on Measuring the Divergence from Randomness. 20, 4 (2002),

357–389.

[2] V. N. Anh, O. de Kretser, and A. Moffat. 2001. Vector-Space Ranking with Effective

Early Termination. In Proc. SIGIR. 35–42.
[3] N. Asadi and J. Lin. 2013. Document Vector Representations for Feature Extraction

in Multi-Stage Document Ranking. Inf. Retr. 16, 6 (2013), 747–768.
[4] N. Asadi and J. Lin. 2013. Effectiveness/Efficiency Tradeoffs for Candidate Gen-

eration in Multi-Stage Retrieval Architectures. In Proc. SIGIR. 997–1000.
[5] N. Asadi, J. Lin, and A. P. De Vries. 2014. Runtime Optimizations for Tree-Based

Machine Learning Models. Trans. on Know. and Data Eng. 26, 9 (2014), 2281–2292.
[6] P. Bailey, A. Moffat, F. Scholer, and P. Thomas. 2016. UQV100: A Test Collection

with Query Variability. In Proc. SIGIR. 725–728.
[7] D. Broccolo, C. Macdonald, O. Salvatore, I. Ounis, R. Perego, F. Silvestri, and N.

Tonellotto. 2013. Load-sensitive Selective Pruning for Distributed Search. In Proc.
CIKM. 379–388.

[8] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y. Zien. 2003. Efficient

Query Evaluation using a Two-Level Retrieval Process. In Proc. CIKM. 426–434.

[9] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and

J. Degenhardt. 2010. Early Exit Optimizations for Additive Machine Learned

Ranking Systems.. In Proc. WSDM. 411–420.

[10] K. Chakrabarti, S. Chaudhuri, and V. Ganti. 2011. Interval-based Pruning for

Top-k Processing over Compressed Lists. In Proc. ICDE. 709–720.
[11] O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. 2009. Expected Reciprocal

Rank for Graded Relevance. In Proc. CIKM. 621–630.

[12] R-C. Cheng, L. Gallagher, R. Blanco, and J. S. Culpepper. 2017. Efficient Cost-

Aware Cascade Ranking in Multi-Stage Retrieval. In Proc. SIGIR. 445–454.
[13] C. L. A. Clarke, J. S. Culpepper, and A. Moffat. 2016. Assessing Efficiency–

Effectiveness Tradeoffs in Multi-Stage Retrieval Systems without using Relevance

Judgments. Inf. Retr. 19, 4 (2016), 351–377.
[14] M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman. 2017. A Com-

parison of Document-at-a-Time and Score-at-a-Time Query Evaluation. In Proc.
WSDM. 201–210.

[15] M. Crane, A. Trotman, and R. O’Keefe. 2013. Maintaining Discriminatory Power

in Quantized Indexes. In Proc. CIKM. 1221–1224.

[16] J. S. Culpepper, C. L. A. Clarke, and J. Lin. 2016. Dynamic Cutoff Prediction in

Multi-Stage Retrieval Systems. In Proc. ADCS. 17–24.
[17] V. Dang, M. Bendersky, and W. B. Croft. 2013. Two-Stage Learning to Rank for

Information Retrieval. In Proc. ECIR. 423–434.
[18] J. Dean and L. A. Barroso. 2013. The Tail at Scale. Comm. ACM 56, 2 (2013),

74–80.

[19] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. 2013. Optimizing Top-k Document

Retrieval Strategies for Block-Max Indexes. In Proc. WSDM. 113–122.

[20] S. Ding and T. Suel. 2011. Faster Top-k Document Retrieval Using Block-Max

Indexes. In Proc. SIGIR. 993–1002.
[21] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. 2011. Evalu-

ation Strategies for Top-k Queries over Memory-resident Inverted Indexes. Proc.
VLDB 4, 12 (2011), 1213–1224.

[22] G. Francès, X. Bai, B. B. Cambazoglu, and R. Baeza-Yates. 2014. Improving the

Efficiency of Multi-site Web Search Engines. In Proc. WSDM. 3–12.

[23] Y. Ganjisaffar, R. Caruana, and C. Lopes. 2011. Bagging Gradient-Boosted Trees

for High Precision, Low Variance Ranking Models. In Proc. SIGIR. 85–94.
[24] S-W. Hwang, K. Saehoon, Y. He, S. Elnikety, and S. Choi. 2016. Prediction and

Predictability for Search Query Acceleration. ACM Trans. Web 10, 3 (Aug. 2016),
19.1–19.28.

[25] M. Jeon, S. Kim, S-W. Hwang, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. 2014.

Predictive Parallelization: Taming Tail Latencies in Web Search. In Proc. SIGIR.
253–262.

[26] X. Jin, T. Yang, and X. Tang. 2016. A Comparison of Cache Blocking Methods for

Fast Execution of Ensemble-based Score Computation. In Proc. SIGIR. 629–638.
[27] S. Kim, Y. He, S-W. Hwang, S. Elnikety, and S. Choi. 2015. Delayed-Dynamic-

Selective (DDS) Prediction for Reducing Extreme Tail Latency in Web Search. In

Proc. WSDM. 7–16.

[28] Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. 2016. Efficient Distributed

Selective Search. Inf. Retr. (2016), 1–32.
[29] Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. 2016. Load-Balancing in Dis-

tributed Selective Search. In Proc. SIGIR. 905–908.

[30] D. Lemire and L. Boytsov. 2015. Decoding Billions of Integers Per Second through

Vectorization. Soft. Prac. & Exp. 45, 1 (2015), 1–29.
[31] J. Lin, M. Crane, A. Trotman, J. Callan, I. Chattopadhyaya, J. Foley, G. Ingersoll, C.

Macdonald, and S. Vigna. 2016. Toward Reproducible Baselines: The Open-Source

IR Reproducibility Challenge. In Proc. ECIR. 408–420.
[32] J. Lin and A. Trotman. 2015. Anytime Ranking for Impact-Ordered Indexes. In

Proc. ICTIR. 301–304.
[33] X. Lu, A. Moffat, and J. S. Culpepper. 2016. The Effect of Pooling and Evaluation

Depth on IR Metrics. Inf. Retr. 19, 4 (2016), 416–445.
[34] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Ven-

turini. 2015. QuickScorer: A Fast Algorithm to Rank Documents with Additive

Ensembles of Regression Trees. In Proc. SIGIR. 73–82.
[35] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini.

2016. Exploiting CPU SIMD Extensions to Speed-up Document Scoring with

Tree Ensembles. In Proc. SIGIR. 833–836.
[36] C. Macdonald, R. L. T. Santos, and I. Ounis. 2013. The Whens and Hows of

Learning to Rank for Web Search. Inf. Retr. 16, 5 (2013), 584–628.
[37] C. Macdonald, R. L. T. Santos, I. Ounis, and B. He. 2013. About Learning Models

with Multiple Query-Dependent Features. ACM Trans. Information Systems 31, 3
(2013), 11.

[38] J. Mackenzie, F. M. Choudhury, and J. S. Culpepper. 2015. Efficient Location-aware

Web Search. In Proc. ADCS. 4.1–4.8.
[39] A. Moffat and J. Zobel. 2008. Rank-Biased Precision for Measurement of Retrieval

Effectiveness. ACM Trans. Information Systems 27, 1 (2008), 2.1–2.27.
[40] J. Pedersen. 2010. Query Understanding at Bing. Invited talk, SIGIR (2010).

[41] M. Petri, J. S. Culpepper, and A. Moffat. 2013. Exploring the Magic of WAND. In

Proc. ADCS. 58–65.
[42] M. Petri, A. Moffat, and J. S. Culpepper. 2014. Score-safe Term Dependency

Processing with Hybrid Indexes. In Proc. SIGIR. 899–902.
[43] C. Rossi, E. S. de Moura, A. L. Carvalho, and A. S. da Silva. 2013. Fast Document-

at-a-time Query Processing Using Two-tier Indexes. In Proc. SIGIR. 183–192.
[44] D. J. Schuirmann. 1987. A Comparison of the Two One-Sided Tests Procedure and

the Power Approach for Assessing the Equivalence of Average Bioavailability. J.
Pharmacokinetics and Biopharmaceutics 15, 6 (1987), 657–680.

[45] A. Shtok, O. Kurland, and D. Carmel. 2016. Query Performance Prediction Using

Reference Lists. ACM Trans. Information Systems 34, 4 (2016), 19.1–19.34.
[46] L. Tan and C. L. A. Clarke. 2015. A Family of Rank Similarity Measures Based on

Maximized Effectiveness Difference. Trans. on Know. and Data Eng. 27, 11 (2015),
2865–2877.

[47] N. Tonellotto, C. Macdonald, and I. Ounis. 2011. Effect of Different Docid Order-

ings on Dynamic Pruning Retrieval Strategies. In Proc. SIGIR. 1179–1180.
[48] N. Tonellotto, C. Macdonald, and I. Ounis. 2013. Efficient and Effective Retrieval

using Selective Pruning. In Proc. WSDM. 63–72.

[49] A. Trotman. 2014. Compression, SIMD, and Postings Lists. In Proc. ADCS. 50.50–
50.57.

[50] A. Trotman, X-F. Jia, and M. Crane. 2012. Towards an Efficient and Effective

Search Engine. In Wkshp. Open Source IR. 40–47.
[51] A. Trotman and J. Lin. 2016. In Vacuo and In Situ Evaluation of SIMD Codecs. In

Proc. ADCS. 1–8.
[52] L. Wang, P. N. Bennett, and K. Collins-Thompson. 2012. Robust Ranking Models

via Risk-sensitive Optimization. In Proc. SIGIR. 761–770.
[53] L. Wang, J. Lin, and D. Metzler. 2011. A Cascade Ranking Model for Efficient

Ranked Retrieval. In Proc. SIGIR. 105–114.
[54] Q. Wang, C. Dimpoloulos, and T. Suel. 2016. Fast First-Phase Candidate Genera-

tion for Cascading Rankers. In Proc. SIGIR. 295–304.
[55] W. Webber, A. Moffat, and J. Zobel. 2010. A Similarity Measure for Indefinite

Rankings. ACM Trans. Information Systems 28, 4 (2010), 20.1–20.38.
[56] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. 2014. Classifier

Cascades and Trees for Minimizing Feature Evaluation Cost. J. of Machine
Learning Research 15 (2014), 2113–2144.

[57] J-M. Yun, Y. He, S. Elnikety, and S. Ren. 2015. Optimal Aggregation Policy for

Reducing Tail Latency of Web Search. In Proc. SIGIR. 63–72.
[58] J. Zhang, X. Long, and T. Suel. 2008. Performance of Compressed Inverted List

Caching in Search Engines. In Proc. WWW. 387–396.

[59] J. Zobel and A. Moffat. 2006. Inverted Files for Text Search Engines. ACM Comp.
Surv. 38, 2 (2006), 6.1–6.56.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Preliminary Experiments
	5 Hybrid Architecture
	6 Experiments
	7 Conclusion
	Acknowledgments
	References

