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ABSTRACT
Mobile search is quickly becoming the most common mode of
search on the internet. This shift is driving changes in user be-
haviour, and search engine behaviour. Just over half of all search
queries from mobile devices have local intent, making location-
aware search an increasingly important problem. In this work, we
compare the efficiency and effectiveness of two general types of
geographical search queries, range queries and k nearest neigh-
bor queries, for common web search tasks. We test state-of-the-
art spatial-textual indexing and search algorithms for both query
types on two large datasets. Finally, we present a rank-safe dy-
namic pruning algorithm that is simple to implement and use with
current inverted indexing techniques. Our algorithm is more effi-
cient than the tightly coupled best-in-breed hybrid indexing algo-
rithms that are commonly used for top-k spatial textual queries,
and more likely to find relevant documents than techniques derived
from range queries.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—indexing methods; H.3.2 [Information Storage and
Retrieval]: Information Storage—file organization; H.3.3 [Inform-
ation Storage and Retrieval]: Information Search and Retrieval—
query formulation, retrieval models, search process; I.7.3 [Docu-
ment and Text Processing]: Text Processing—index generation

General Terms
Spatial textual indexing; location-aware search; experimentation;
measurement; performance

1. INTRODUCTION
Location-aware search is an increasingly important problem in

Information Retrieval. For mobile devices, more than 50% of all
search queries have local intent [1]. Now more than ever, queries
can derive a user’s location using GPS, and use this information to
improve search effectiveness. Location-aware search is not limited
to mobile devices. Another recent study has shown that 84% of
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all computer users have searched with local intent [2]. Location
oriented search is popular regardless of the device of choice, which
facilitates the need to efficiently and effectively support location-
aware queries.

In order to successfully support these search tasks, Information
Retrieval (IR) systems cannot depend on just their textual compo-
nent, as results may be suboptimal, leading to poor user satisfac-
tion. Therefore, spatial relevance should also be considered. One
popular approach to constrain search queries spatially is to use a
“range constraint”. Given a location p and a maximum travel dis-
tance, a range query returns all items whose location fall within
that distance from p. An example of a spatial range query is when
a user wants to find all of the petrol stations within 5 km of their
current location. Another popular location-aware query is the k
nearest neighbor (knn) query, where given a specific location p,
the query returns the k items closest to p.

Intuitively, both of these spatial query types can be combined
with textual relevance for a keyword search. The users’ intent can
be expressed as a Boolean predicate of keywords to find the useful
documents. A Boolean query consists of a set of keywords, where a
conjunctive Boolean query retrieves the documents that contain all
the query keywords, and a disjunctive Boolean query retrieves the
documents that contain at least one of the query keywords. Based
on the combination of these constraints with a spatial query type,
hybrid spatial keyword queries can be categorized in four types: (i)
Conjunctive Range queries [10]; (ii) Conjunctive knn queries [16];
(iii) Disjunctive Range queries; and (iv) Disjunctive knn queries.

The results of such queries are generally returned as a ranked
list of top-k documents. These queries are supported through hy-
brid systems that support both spatial and textual filtering of the
documents to retrieve the top-k items. Different scoring functions
can be employed to achieve the final result. One example scoring
function is a weighted linear combination of a term-based measure
(TF-IDF, Language model, BM25, etc.) and a geographic score –
usually based on the Euclidean distance between the query location
and the location of the document.

Based on such combined scoring functions, another type of query
called a Top-k Nearest Neighbor query has been explored in the lit-
erature [12, 20, 26, 30]. A top-k knn query returns the k doc-
uments with the highest combined spatial and textual relevance
score. This is in contrast to previous knn techniques which sim-
ply returned the k nearest neighbours containing the query terms.
A more IR-centric approach is to rely heavily on the textual scor-
ing component, but use the spatial distance between objects, or use
spatially reordered documents to achieve early-termination in the
scoring function [9, 10, 32]. This leads us to two research ques-
tions.



RQ 1:. Which indexing approaches provide the best efficiency
trade-offs for bag-of-words, top-k knn search in large document
collections?

RQ 2:. What are the efficiency and effectiveness trade-offs for the
two most common spatially constrained query types when applied
to bag-of-words, location-aware search?

Contributions. In this work, we consider two alternative ap-
proaches to efficiently process bag-of-words queries with local in-
tent. First, we introduce a variation of the Weak AND (WAND) [7]
dynamic pruning algorithm which incorporates upper bounds esti-
mates on the distance between documents and queries in order to
support rank-safe dynamic pruning, and efficiently solve the Top-k
Nearest Neighbor Query problem. We refer to this algorithm as GE-
OWAND. Secondly, we re-examine the recent work of Christoforaki
et al. [10] which efficiently solves the Boolean Conjunctive Top-k
Range Query problem. Specifically, we explore the subtle differ-
ences between bag-of-words (disjunctive) top-k nearest neighbor
queries, and top-k range queries, with respect to both efficiency
and effectiveness.

2. BACKGROUND
Related Work. Geographical Information Retrieval (GIR) refers
to the problem of efficiently retrieving relevant documents with re-
spect to both textual and spatial relevancy to a query [24]. A sig-
nificant body of prior work exists in GIR, covering everything from
detecting geographical entities in documents and queries using Nat-
ural Language Processing, to efficient indexing of documents based
on spatial intent. In this work we focus only on spatial-textual key-
word indexing and search algorithms. In order to efficiently support
hybrid spatial-textual queries, existing work uses both traditional
spatial and text indexing techniques. We first give a brief overview
of the separate spatial and text indexing methods that are incorpo-
rated in several spatial-textual search approaches.

Spatial indexes. The spatial component of spatial-textual ob-
jects are indexed using one of these three classes of spatial indexes,
namely, space partitioning indexes, R-tree indexes, and space fill-
ing curve indexes.

The kd-tree [6] is a space partitioning tree, where each node is
a k-dimensional point. In each iteration, one of the k-dimensions
is chosen as a basis of dividing the rest of the points. For each
node, an implicit hyperplane is generated that passes through the
point and perpendicular to that dimension’s axis. Points to the left
of the hyperplane are represented by the left subtree of that node
and points to the right are represented by the right subtree. The
kd-tree is essentially a type of multidimensional binary search tree.
A limitation of the kd-tree is that it only indexes point data, which
limits the types of spatial queries that can be supported. If other
geometric shapes must be stored, then the R-tree is a more suitable
choice.

The R-tree and variants [5, 18, 27] are a commonly used spatial
index capable of storing any geometric shape. The idea is to al-
low spatial pruning using a Minimum Bounding Rectangle (MBR).
Objects that are spatially close-by are grouped together in a single
MBR. The R-tree is a hierarchy of nodes where the entries of a non-
leaf node are the identifiers of all child nodes and the corresponding
MBRs. The data objects are stored in the leaf nodes. The perfor-
mance of the index depends on how the MBRs are constructed.

Textual indexes. The inverted index [33] is the most common tex-
tual index used in large-scale information retrieval systems. Two
alternatives to traverse inverted files have been extensively studied:
(i) term-at-a-time (TAAT) processing, where the inverted lists of
the query terms are traversed sequentially, and the partial scores of
the documents are maintained; and (ii) document-at-a-time (DAAT)
processing, where the inverted lists are traversed concurrently, and
a document is fully scored before considering the next document.

Broder et al. [7] introduced a dynamic pruning DAAT algorithm
called Weak, or Weighted AND (WAND) which minimizes the num-
ber of fully scored documents in single pass traversal. First, the
algorithm identifies a candidate document by maintaining a sorted
list of cursors for the next unscored document for each query term.
The current smallest document ID is used to estimate the maximum
score the query terms can achieve by summing up the maximum
scores for each term appearing in the candidate document. If this
cumulative upper bound score is greater than the lowest scoring
item in a min-heap of the current top-k items, then the document is
scored. If one or more query terms are rare in the collection, then
the traversal acts like a ranked Boolean disjunctive query. If the
query terms are common, then the process acts more like a ranked
Boolean conjunctive query. Subsequent work has repeatedly shown
that variations of the WAND processing scheme are efficient and ef-
fective in practice [14, 15, 23, 28].

Spatial keyword indexes. Existing work in spatial keyword in-
dexes combines a spatial index with a text index to answer the
hybrid queries. Several hybrid spatial textual indexes have been
studied in the literature [10, 12, 20, 30, 31, 32]. Based on the com-
bination scheme, the hybrid indexes can be categorized into two
types, namely, a loose combination and a tight combination.

Loosely combined hybrid indexes maintain separate data struc-
tures for the spatial and textual components. In this approach, a
query can be answered by either filtering with the spatial index
first, then verifying with the textual index, or vice-versa. An exam-
ple of such an index is to use an R-tree to find the spatially relevant
objects, then pass the candidates to an inverted file to score textu-
ally relevant documents from this candidate set. This is known as
space-first processing. Conversely, if the textual index is used first
for scoring, it is called text-first processing. Zhou et al. [32] de-
scribe the loose combination of a spatial index with a textual index
in three different ways: (i) separate indexes, (ii) an inverted file on
top of an R*-tree for text-first processing, and (iii) an R*-tree on top
of an inverted file for space-first processing. According to Zhou
et al. [32], the text-first implementation performed slightly better
than the space-first.

These indexes can answer all four types of hybrid queries. The
main drawback of the approach is that a number of non-relevant
objects can be retrieved in the filtering stage. If the spatial index is
used first, the retrieved objects are spatially relevant to the query,
but may not be textually relevant. The same is true if the text index
is used first. However, the advantage of two separate indexes is the
ease of maintenance and updates.

Christoforaki et al. [10] propose an alternative hybrid index to
answer conjunctive range queries, where the resulting documents
are ranked using a combined ranking function. They show that a
spatial structure is not necessary for text-first processing – A simple
array can be used to look up the geo-location of a document, and the
document can either be added to the results list, or discarded if the
textual component is not relevant. Christoforaki et al. go on to pro-
pose two approaches based on space filling curves, SFC-Quad and
SFC-SKIP which further improve the runtime performance. The



{cinnamon: {L1, 2.3} {L2, 3.5}

{cinnamon: {L3, 1.0} {L4, 2.3} {cinnamon: {L5, 3.5} {L6, 0.0}

Figure 1: An example IR-Tree and pseudo-nodes for the term
‘cinnamon’. Note that all terms that appear in the tree below the
current node will appear in the pseudo-node, a single word is shown
here for simplicity. The score 0.0 in the node L6 shows that the
term does not appear in any documents in the sub-tree of node L6.

Algorithm 1: Greedy IR-Tree traversal
1.1 function GETTOPk(q, IR , k)
1.2 Ans ;
1.3 Queue INSERT(root(IR), 0)
1.4 while Queue 6= ? do
1.5 Node NEXT_BEST_ELEMENT(Queue)
1.6 if Node is an Internal Node then
1.7 for Child 2 Node do
1.8 Queue INSERT(Child, SCORE(Child, q))
1.9 else if Node is a Leaf Node then

1.10 for Object 2 Node do
1.11 Queue INSERT(Object, SCORE(Object, q))
1.12 else
1.13 Ans INSERT(Object, SCORE(Object, q))
1.14 if | Ans | = k then
1.15 return Ans

SFC-Quad method uses a QuadTree to improve skipping, and the
SFC-SKIP method embeds an MBR into block skipping to enable
the postings list traversal to skip blocks of documents that do not
overlap with the query region.

Tight combination. In tightly combined hybrid indexes, both the
spatial and textual pruning techniques are applied simultaneously
during query processing. Such indexes can answer all four hybrid
queries, including top-k knn queries. The most commonly used
tightly combined hybrid index is the IR-Tree [12]. The IR-Tree is
essentially an R-tree [18], where each node is augmented with an
inverted file for the documents stored in the corresponding sub-tree.
An inverted list of a term t is a sequence of the form hd, �i, where d
is the document-id, and � is the weighted score of t in d, computed
by a text relevance metric. As the leaf nodes of an R-tree contain
the actual data objects, the inverted file of each leaf node indexes
the data of the actual document objects. In contrast, each non-leaf
node is associated with a pseudo-document, that is, the union of all
terms in the documents of its child nodes. Here, the weight of a
term t in a pseudo-document is the maximum score for term t in
all of the documents contained in the subtree. Figure 1 shows an
example inverted list for the term ‘cinnamon’ in an IR-Tree.

This data structure reduces the size of the search space quickly
by simultaneous pruning both spatially and textually non-relevant
branches. The general search algorithm proposed with the IR-Tree
and similar structures is the greedy search method, in which the
algorithm expands the most promising nodes first. A sketch of the
greedy search is shown in Algorithm 1.

Cong et al. also proposed several variants of the IR-Tree, includ-
ing the DIR-Tree, CIR-Tree, and CDIR-Tree, aimed at optimizing
the query performance. During the insertion process, a DIR-tree
minimizes the areas of the MBRs, and maximizes the text similar-
ities between the objects of each node. In the other two variants,
clustering techniques are used to achieve a better text relevance es-
timation in the upper level nodes. These techniques result in an
improved pruning of the search-space, at the cost of a much longer
construction time.

Independently, Li et al. [20] proposed a similar data structure
called IR-Tree (referred to as the Li-IR-Tree in this work). The
key difference between the Li-IR-Tree and the indexes proposed by
Cong et al. [12] is that the posting lists of the non-leaf nodes are
stored in a concatenated form in the Li-IR-Tree, whereas they are
stored separately in the IR-Tree. It is important to note that all of
the IR-Tree variants were initially designed for on-disk use. For
the purpose of our experiments, we implement a standard IR-Tree
in memory, and store the pseudo-document nodes separately from
the postings lists. This approach is derived directly from the hybrid
indexing implementations of Chen et al. [8].

3. APPROACH
In this section we describe two different algorithmic approaches

to efficiently score location-aware queries. The first set of algo-
rithms are a heuristic two-stage approach where the spatial or tex-
tual top-k act as a first-stage filter, and then the initial set of candi-
dates is refined to produce the final ranking. Our second algorithm
builds on a safe-to-k, two-component scoring estimation inspired
by the two-score language model variants of WAND as originally
described by Petri et al. [23].

Textual and Spatial Relevance. For a geographic query q, con-
sisting of a location `q and keywords t 2 q, the combined score
for candidate document c consisting of a location `d and a textual
document d, is computed using the following ranking function:

s(q, c) = ↵ · �(`q, `d) + (1� ↵) ·
X

t2q

�t

where �(`q, `d) is the spatial relevance component, �t is the textual
relevance component for t, and ↵ 2 (0, 1) is a parameter that can
be used to weight the importance of the spatial and textual compo-
nents.

This is the most common spatial-textual scoring scheme used in
current work [12, 20, 30, 31]. Values of ↵ can influence the effi-
ciency and the effectiveness for a query, as more influence to either
component may improve spatial or textual pruning. However, this
clearly depends on the type of indexing approach used. Both Li
et al. [20] and Zhang et al. [30] found that ↵ did not have any no-
ticeable effects on efficiency, whereas Cong et al. [12] found large
differences in run-time with respect to the value of ↵, and suggest
↵ = 0.3 as a reasonable default. Many formulations exist for � and
�, and these are important system design choices. In this work, the
spatial metric used is specified as:

�(`q, `d) = (1� Euclidean(`q, `d)
dmax

) ·
X

t2q

U(�t)

where dmax is the maximum distance between any two unique points
in the geographical space, and U(�t) is the textual upper bound
score for the query term t 2 q. The textual relevance metric is
computed using BM25 in this work. More information on the ex-
act BM25 formulation used in this work is discussed in Section 4.



Cascaded Filtering. Our baseline approach is a heuristic filter
based on knn. Our approach differs from previous loosely coupled
scoring methods [9, 10, 32] by guaranteeing that the initial k0 doc-
uments derived from the spatial index are the k0 nearest document
neighbors for each query. Previous work used a fixed sized MBR to
identify all documents within a pre-defined range, and considered
only Boolean conjunctive queries between terms. Our approach
is more pragmatic, and aligned with current cascaded web-based
ranking approaches which employ a filter to identify a subset of
candidate documents that can then be rearranged into a final order-
ing based on textual relevance using LTR or higher order depen-
dency models [3, 4, 21, 22]. In this approach, a spatial tree is used
to find the k0 nearest neighbours to the query location `q , along
with the distance of each candidate from the query point, which
yields a candidate set C, where |C| = k0. Next, the candidate set
C is passed to a modified DAAT query processor which runs as
follows: For each candidate c 2 C, the combined spatial and tex-
tual score for query q is computed as s(q, c). This process can be
seen as a reordering of C. Finally, the top-k items can be simply
taken from the reordering and returned. There are two versions of
this approach which we refer to as W-R* and W-kd. W-R* uses a
bulk loaded R*-tree for knn queries, whereas W-kd uses a kd-tree
for the knn filtering.

We also compare and contrast this approach with the more com-
mon filter-based approach which uses a range query to define the
subset of documents that must be scored in the final text ranking
stage. While not explicitly explored in previous work [9, 10, 32], it
is relatively easy to support disjunctive, top-k, bag-of-words search
queries using MBR constraints. Firstly, an R*-tree is used to issue
a range query, in which all documents within the given range are
returned as a set of candidates, C. Next, C is passed to a DAAT
processor. This processor then evaluates all candidate documents
and returns the top-k documents based on the textual score, �. For
example, given an MBR of 10 km covering a query centroid, it is
assumed that a user is willing to travel anywhere within this MBR,
so the distance to the centroid is not relevant. Three different MBR
sizes were tested, namely MBR-1, MBR-10 and MBR-100, which
uses MBRs sized at 1 km, 10 km and 100 km respectively, each
centered over the query location.

GEOWAND. A major limitation of the filtering techniques is that
the approaches rely on a heuristic method to filter candidate doc-
uments before a final ranking is computed. Consequentially, these
approaches are not guaranteed to return a rank-safe top-k ranking.
However, a carefully modified WAND traversal can guarantee score
safety. The GEOWAND algorithm proposed here provides this desir-
able property.

Algorithm 2 shows the key steps involved in upper bounding the
weighted spatial scoring estimate as documents are considered for
final scoring, and a second score refinement stage once a candidate
document is selected. Given a query q, with terms t 2 q and a
location `q , the processing is as follows. In the initial candidate se-
lection phase two contributions must be tracked, the spatial_limit
and the textual_limit. The upper bound for the spatial_limit occurs
when `q = `d. Each term pivot in document cpivot has a global max-
imum textual score added to textual_limit. To keep the two scores
normalized with respect to ↵, this upper bound is also added to
spatial_limit in Line 2.4. In each iteration of the loop, the com-
bined and normalized upper-bound textual and spatial scores are
checked against the score of the lowest scoring document in a top-k
min-heap, tracked with ✓. If the potential total score for the current
document exceeds ✓, then the candidate document must be scored.

Algorithm 2: WAND processing with geospatial weights, re-
placing steps 10–21 in Algorithm 1 of Petri et al. [23].

2.1 text_limit 0; spatial_limit 0; pivot 0
2.2 while pivot < |q|� 1 do
2.3 text_limit text_limit + (1� ↵) · U [pivot]
2.4 spatial_limit spatial_limit + ↵ · U [pivot]
2.5 if text_limit + spatial_limit > ✓ then
2.6 s text_limit + spatial_limit
2.7 break, and continue from Step 2.9.
2.8 pivot pivot + 1
2.9 if c0 = cpivot then

2.10 t 0
2.11 s s� spatial_limit + ↵ · �(`q , `pivot)
2.12 while t < |q|� 1 and c0 = cpivot do
2.13 s s� (1� ↵) · U [t] + (1� ↵) · �t
2.14 if s < ✓ then
2.15 break, and reset all pointers to cpivot + 1.
2.16 . Update heap and ✓ . . . remaining computation similar to the

approach described in Algorithm 1 of of Petri et al. [23].

Otherwise, the loop continues until the postings lists are exhausted,
or when no more documents can score above ✓.

When a candidate document is selected for scoring, the true score
of the candidate document can be incrementally refined1. First,
the true spatial score contribution is updated for cpivot. In the sim-
plest implementation of �, dmax is set as the maximum Euclidean
distance between any two documents in the collection (GEOWAND-
global). However, early termination in the scoring phase can be
improved by finding the distance from the furthermost point in the
geospatial dataset to the current query location `q , and using this
distance as dmax (GEOWAND-local). The smaller dmax is, the quicker
� will converge to 0.

Next, the textual contribution for each term in cpivot is refined.
The upper bound U [t] for each term is iteratively substituted for
the true textual score �t of the term in Lines 2.12 � 2.15. If the
refined score of the candidate document is less than ✓ at any stage
of this iteration, the document cannot make it into the heap, and
execution is returned to the candidate generation loop.

The primary difference between WAND and GEOWAND is that GE-
OWAND must also compute the spatial relevance dynamically. The
scoring operation that occurs for each candidate document is also
slightly more complex. WAND must only score the textual relevancy,
whereas GEOWAND must compute the normalized sum of both the
textual and spatial scores before determining if the candidate docu-
ment can be added to the top-k heap. As ↵ approaches 0, GEOWAND
reduces to WAND. To facilitate spatial scoring, a simple vector of
coordinates indexed by document ID can be used to store location
data. Then, the coordinates are used to compute the normalized
distance score for each candidate document that must be scored.

4. EXPERIMENTS
Experimental Setup. All experiments were executed on a 24-
core Intel Xeon E5-2630 with 256GB of RAM hosting RedHat
RHEL-v6.3. Postings lists were generated using Indri, stopping,
and Krovetz stemming. Each posting list was then extracted, com-
pressed, and stored in blocks of 128 entries using the FastPFOR
library [19] to support skipping. For ranking, a WAND-based variant
of BM25 was used with with k1 = 0.9 and b = 0.4. 2 All algo-

1The observation that text scoring can be incrementally refined was
originally made by Gog and Petri [17]. Here we extend this idea to
improve pruning for non-textual features.
2The values for b and k1 are different than the defaults reported



Figure 2: The graphical representation of the document set D and
query set Q in the CW09BGEO dataset. Note the clustering of both
documents and queries around major cities and populous areas.

rithms were implemented in C++ and compiled with -O3 flags, and
all experiments were ran in memory. For all experiments reporting
GEOWAND timings, the default algorithm used is GEOWAND-local
(G-W).

Search accuracy is measured using Maximized Effectiveness Dif-
ference (MED), and scored with RBP and a persistence p = 0.95
(MEDRBP0.95) [11, 29]. This approach allows us to quantify the
effectiveness differences between runs without requiring relevance
judgments.

Dataset. Experiments are conducted using a subset of the TREC3

ClueWebB collection, known as CW09BGEO. Since this collection
is not geotagged, the geotagging process is outlined here. Firstly, a
Redis4 database was created which stored tuples of the form
(location_name, latitude_longitude). These tuples were
taken from GeoNames5, and ordered such that the most populous
locations would take preference over other locations with the same
name. Next, location names in each document were extracted from
the Freebase annotations of the ClueWeb Corpora6, and were used
to retrieve geographic coordinates that are associated with the loca-
tion name from the Redis DB. Finally, the coordinates were associ-
ated with the document ID. The query set used is the 2009 Million
Query Track, and was geotagged in the same way as the document
collection. A single location is used for each document. In queries
that have multiple locations specified, the query has been repli-
cated as a one-location query for each specified location. For ex-
ample, consider the query “beaumont port arthur airport”.
This query would be broken into two separate queries, with the
location of beaumont supplied for one, and the location of port
arthur supplied for the other. This resulted in 24 million unique,
geotagged documents, and 5,315 unique geo-queries (Figure 2).

An issue with the natural language processing method of geo-
tagging documents and queries is the granularity of location data.
Many of the documents have the same location (documents con-
taining New York for instance). This is clearly not representative
of the granularity we would expect for stores or locations in a large
city, and can unfairly skew the results for queries matching a large
cluster of documents with identical locations. To make the geotags
more realistic, a random ✏-value is added to the latitude or longitude

by Robertson et al. [25]. These parameter choices were re-
ported for Atire and Lucene in the 2015 IR-Reproducibility Chal-
lenge, see github.com/lintool/IR-Reproducibility for fur-
ther details.
3https://www.trec.nist.gov
4https://redis.io
5http://download.geonames.org/export/dump/
6https://lemurproject.org/clueweb09/FACC1

Dataset Docs Unique terms Unique locations

CW09BGEO 23,781,142 53,523,166 23,413,629
WIKIGEO 1,000,000 2,530,440 999,079

Table 1: Statistical summary of the two collections used in the ex-
periments.

System Dataset Fanout

kd-Tree WIKIGEO 100
R*-Tree WIKIGEO 15
IR-Tree WIKIGEO 10
kd-Tree CW09BGEO 150
R*-Tree CW09BGEO 5

Table 2: Summary of the best tree fanout for each spatial index –
collection combination.

of any duplicate geotag, with ✏  0.0000000001. Before “scram-
bling", there were 150,000 unique locations across the document
set, which was expanded to 23,413,629 unique locations. Queries
were left unscrambled, which resulted in 2,000 unique query loca-
tions across the 5,315 queries.

A second dataset was created for use in preliminary testing. This
smaller dataset is a subset of the CW09BGEO dataset, and is simply
the first 1 million documents from the CW09BGEO dataset ordered
by spam-score [13]. This dataset is referred to as WIKIGEO since
a large number of geo-tagged Wikipedia documents are in the col-
lection, as these documents are often the highest ranked documents
by spam score. A summary of the datasets can be found in Table 1.

Parameters. Before the final experiments were ran, a parameter
sweep was done for each spatial index to determine the best fanout
for the datasets. The chosen values are summarized in Table 2.

Time and Space Trade-offs Revisited. Our first set of experi-
ments are designed to address RQ1. Specifically, we are interested
in the scalability of the IR-Tree as previous research has shown the
approach to have a significant space overhead [8], but to be very
efficient for smaller k.

Clearly, one large disadvantage of the IR-Tree (denoted IR in
the following graphs) with respect to in-memory processing is the
number of cache misses that occur. Since the tree structure is stored
separately from the pseudo-nodes, which are in turn also separate
from the postings lists, a single iteration of the greedy search may
access all three data structures, which may be located far apart in
RAM. Another issue with the IR-Tree is the necessity of precomput-
ing the textual scores for each term in each document. This leads
to a large memory footprint, and compression of the pseudo-nodes
is not possible without quantization. Note that postings lists were
stored in a similar format to the pseudo-nodes, which explains the
increased size of the postings lists as compared to the compressed
WAND postings. One redeeming quality of the IR-Tree is that it is
safe-to-k. Therefore, every query is guaranteed to have the top-k
documents returned with respect to the ranking function. There-
fore, the effectiveness of the IR-Tree is optimal with respect to the
ranking function used, and better than any of the filtering methods
which are not rank-safe, at the cost of both time and space effi-
ciency.

Figure 3 shows the relative costs for each indexing approach for
the WIKIGEO collection. We show the different space costs of the
IR-Tree as a function of the tuning parameter fanout. Note that
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Figure 3: A comparison of the space usage for a GEOWAND inverted
index, a loosely coupled WAND inverted index combined with an
R-Tree and k-d-Tree, and IR-Tree of varying fanouts. The space
difference between the different WAND and GEOWAND indexes is
negligible.
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Figure 4: The mean running time per query as a function of k for all
query type and index combinations on the WIKIGEO dataset, with
↵ = 0.5.

the total size of the original uncompressed document collection
is around 9GB. So the space overhead for the IR-Tree is signifi-
cant, approaching 2x the size of the original collection. In fact, the
space overhead for the IR-Tree is so substantial, we were unable to
construct the index for the full CW09BGEO collection. It is clear
that more focus should be placed on using well known methods
for text indexing and compression in future hybrid indexing exper-
imental comparisons, as the current methods are neither scalable
nor friendly to in-memory traversal.

Figure 4 shows the average processing time per query for k =
10, 100, and 1,000. Note that the MBR and knn filtering meth-
ods MBR-1, MBR-10, MBR-100, W-R*, and W-kd are not rank-safe.
So, despite the clear efficiency advantages, some loss of effective-
ness does occur. Effectiveness will be explored further in the next
section. The IR-Tree (IR) and GEOWAND (G-W) methods are both
safe-to-k. We can see that the efficiency gap between GEOWAND
and IR-Tree grows as k increases. At k = 1,000, there is an or-
der of magnitude difference between the running time of the two
algorithms.

As we saw in Figure 4, the hybrid IR-Tree index is less efficient
than all of other approaches we tested, and the performance gap
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Figure 5: The cumulative number of branches evaluated for the IR-
Tree traversal for ↵ = 0.5 on the WIKIGEO collection. The greedy
search must search many more nodes as k increases, which results
in a significant increase in the number of cache misses incurred
when walking the tree.

grows with respect to k. To better understand why the algorithm
performed so poorly, we computed the number of branches in the
IR-Tree that must be evaluated to determine the final top-k list. Fig-
ure 5 shows the number of branches as a function of k and queries
processed. We can see that the number of branches traversed is
significant for values of k greater than 1,000, which are commonly
used in multi-stage retrieval scenarios.

So, despite several previous papers reporting that IR-Tree is an at-
tractive time and space trade-off for top-k knn queries, our exper-
iments do not reach the same conclusion. The IR-Tree does not ap-
pear to be a competitive search algorithm for in-memory location-
aware search in large text databases. It should be re-iterated that
prior experimental studies of the IR-Tree reported times that were
disk-based and not memory resident, and the textual objects were
considerably smaller than the documents in our collection. So, the
poor performance we have observed could be an artifact of the
problem we are trying to solve, which may not match the origi-
nal intent. Since we are unable to construct the IR-Tree index on
larger datasets, and the performance is not competitive, we do not
consider it further in the following sections.

Filter Effectiveness. We now turn our attention to RQ2, and the
effectiveness of the filter-based queries. Recall that two major types
of queries dominate the literature for location-aware search – range
and knn spatial-textual queries. Both of these query types can be
processed conjunctively or disjunctively. Here we focus on only
bag-of-words disjunctive top-k querying.

As shown in Figure 4, filtered range queries are efficient, but
there is inevitably some loss in effectiveness. This is due to the
diversity in queries that are observed in large query streams. Some
queries cover very densely populated areas, while other query lo-
cations may originate in sparsely populated areas. However, many
potential documents close to the query origin do not guarantee that
these documents also match the keywords in the query. The high-
est scoring documents for the combined textual-spatial score could
be just outside of the MBR range which is fixed at query time.
This makes automatically bounding the size of the MBR difficult
in practice.

Table 3 shows the Maximum Expected Difference (MED) for
two common utility-based effectiveness metrics, ERR and RBP.
For both metrics, we see that the effectiveness loss for all of the
filtering methods is substantial when compared to a rank-safe knn



↵ MBRF MBRF MBRF KNNF KNNF KNNF
1 km 10 km 100 km k = 10 k = 100 k = 1000

MEDRBP0.95

0.2 0.7164 0.6978 0.6601 0.9947 0.9936 0.9703
0.5 0.5991 0.5746 0.5246 0.9921 0.9902 0.9551
0.8 0.4412 0.4085 0.3432 0.9880 0.9849 0.9319

MEDERR@20

0.2 0.6844 0.6646 0.6264 0.9655 0.8892 0.8746
0.5 0.5589 0.5332 0.4825 0.9473 0.8354 0.8149
0.8 0.4021 0.3682 0.3042 0.9220 0.7625 0.7406

Table 3: The Maximum Expected Difference (MED) as measured
with MEDRBP0.95 and MEDERR@20. A MED value less than 0.2 is
considered negligible. The higher the value, the more likely there
is a noticeable effectiveness difference.

approach. When comparing the MBR Range Query methods, we
see two important trends. First, the overall effectiveness is never
less than 0.2, even when the queries are heavily biased towards
the spatial score. This is largely an artifact of query diversity.
Some queries have many thousands of potential documents that fall
within the query range, while other queries have only a few. Even
when there are many potential documents, there is no guarantee
that the documents contain the keywords with the highest impact.
Even fewer would be conjunctive Boolean matches.

The second important trend is that the Range queries tend to per-
form better than the loosely coupled knn query approach, even
with a conservative k0 of 2.5 ⇥ k. This is because it is even less
likely that the documents very close to a query are textually relevant
in a dense document region.

These two observations further strengthen our belief that rank-
safe scoring methods such as GEOWAND are in fact the simplest and
most intuitive approach to ranking documents with more than one
type of weighting constraint. The importance of location can be
easily determined independent of locational document clustering.

The virtues of GEOWAND. So, GEOWAND has a few clear ad-
vantages over any of the filtered range query approaches evaluated.
Firstly, GEOWAND allows a user to submit a location-aware query
without the need to input any distance parameters. Clearly, this is
more intuitive than using the knn or MBR filters, in which a k0

or MBR size must be selected by the user or decided a priori by
the retrieval system. The obvious caveat here is that the ↵ normal-
ization must be carefully selected in order to provide the correct
spatial and textual relevancy levels. Secondly, GEOWAND can be
applied to an existing index without much effort. Reindexing is not
necessary, and the only addition that must be made to the system
is an efficient representation of the document locations. Thirdly,
a GEOWAND index can be used to service standard textual queries
without a loss of runtime efficiency or effectiveness compared to a
plain WAND index. Finally, GEOWAND scales similarly to WAND, so
it can be applied to much larger indexes efficiently. Figure 6 shows
the relative efficiency of filter-based and GEOWAND approaches on
a much larger collection. We can also see the additional cost of GE-
OWAND over WAND, and the scalability of the various approaches.

Figure 7 shows the number of postings examined for both GE-
OWAND methods. Clearly GEOWAND benefits from the dynamic re-
finement of the spatial bound when dmax is query specific. This en-
hancement results in fewer candidate documents being fully scored
since � decreases faster as the distance between the document and
the query increases.
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Figure 6: A comparison of the time with respect to k for filtering
and GEOWAND systems on the CW09BGEO dataset. Note that ↵ =
0.5 in this experiment, and that W represents a standard textual
WAND timing run across the textual query only.

Figure 8 shows the effectiveness and efficiency trade-offs for all
of the algorithms examined with the CW09BGEO dataset. Clearly,
there is a tension between efficiency and effectiveness for the meth-
ods tested. The knn filters provide fast but less relevant results.
The MBR filter is less efficient, but finds more relevant results. The
larger the MBR, the more documents on average must be scored,
but with improved overall effectiveness. With the knn filter, as k0

increases, the results would become closer to those of GEOWAND,
but efficiency would continue to tail off. The IR-Tree would deliver
the same results as GEOWAND but less efficiently.

5. CONCLUSION
In this paper, we have explored the efficiency and effectiveness

trade-offs for knn and range-based location-aware search queries
(RQ2). Our experimental study has shown that while range-based
queries are fast, the effectiveness of the queries are dependent on
the spatial properties of the queries and the collection. On the other
hand, safe-to-k methods derived from top-k knn spatial-textual
queries are capable of finding relevant documents regardless of the
collection properties.

We have also presented a variation of the WAND processing algo-
rithm called GEOWAND which is easy to implement, efficient, and
scalable. This algorithm provides an attractive trade-off for pro-
cessing location-aware queries, and provides a suitable answer to
RQ1. GEOWAND is an order of magnitude faster than a tightly cou-
pled IR-Tree index, and up to 15 to 20 times smaller. Note that
one important optimization was not explored in this work – docu-
ment reordering based on location. Using space filling curves or
similar approaches has been shown to further improve efficiency
in location-aware search. We believe these efficiency gains are or-
thogonal to our experiments as all of the approaches tested would
benefit in a similar manner from this enhancement, including GE-
OWAND. We intend to explore these and other enhancements in fu-
ture work.
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