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Abstract. Effectively retrieving and ranking spoken audio — such as
podcasts — is an important problem in the field of Information Retrieval.
A typical approach for the effective retrieval of podcasts is to reduce the
problem to text retrieval by automatically transcribing the audio files
to textual data, followed by segmentation, indexing, and retrieval. In
this work, we examine how automatic transcription algorithms impact
the effectiveness of podcast retrieval and re-ranking in dense and sparse
retrieval configurations, motivated by the wide spectrum of quality-vs-
cost transcription models currently available. Our results demonstrate
that the choice of transcription model has a measurable impact on both
end-to-end retrieval and late-stage re-ranking pipelines, for both dense
and sparse retrievers. Our study highlights the issues and limitations of
employing automatic speech recognition (ASR) models in podcast search
and motivates future research on this important problem.
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1 Introduction

As the popularity of podcasts continues to grow, effectively representing spo-
ken audio for ranked retrieval tasks has become an increasingly important re-
search problem to the Information Retrieval (IR) community [5, 31]. Recent
work demonstrates that, although podcasts often have rich metadata, such as
show titles, episode titles, and descriptions provided by content creators, the
most reliable signal for ranked retrieval tends to be the audio speech compo-
nent of the content – which is transcribed using an automatic speech recognition
(ASR) model [9]. However, many new ASR models are now available, each with
a different quality-to-cost ratio. For example, public ASR APIs from Google and
OpenAI cost fractions of a cent per minute of audio that is transcribed, but
may be prohibitively expensive for certain tasks;1 conversely, free, open-source
options are readily available, but their quality can vary significantly. Therefore,
exploring how this plethora of methods can impact the effectiveness of podcast
retrieval is well-motivated. To the best of our knowledge, this is the first work to
explicitly examine the end-to-end trade-offs of transcription cost versus retrieval
quality. See Section 3 for a detailed list of our contributions.
1 Transcribing 60,000 hours of audio – the size of the Spotify podcast corpus [10] —

would cost between $8,000 to $22,000 USD as of October 2024.
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2 Related Work

The first seminal work on spoken document retrieval dates back to the TREC
spoken document retrieval track between 1997 and 2000, where manual and auto-
matic transcripts of news were collected from radio and television broadcasts [13].
A key finding of this track was that automatic-transcription can achieve similar
retrieval effectiveness to manually curated transcripts. In all subsequent work,
various shared tasks have focused on speech retrieval in contexts such as per-
sonal testimonies [28], lectures [1, 2, 3, 4], and television shows [11, 12, 19, 34].
Refer to the work of Jones [16] for a comprehensive overview of spoken text
retrieval, and to Jones et al. [18] for a discussion of future directions in podcast
information access.

More recently, TREC introduced the Podcast Track in 2020 [17]. This track,
along with the Spotify Podcast Dataset [10], provides further research and re-
sources for podcast retrieval and summarization [9, 18]. Although track partici-
pants were offered the raw audio data, an automatically generated transcription
was widely used for both summarization and ranking tasks. Intuitively, it seems
likely that the quality of the ASR model would be correlated with the effective-
ness of any downstream tasks using such automatically generated transcripts;
this is highlighted by the work of Jones et al. [18] who discuss the importance of
high-quality ASR methods on retrieval effectiveness [35]. Given that word-error
rates for modern collections can be as high as 20% [10], we are motivated to
revisit this fundamental and practical problem to determine how much recent
advances in ASR impact end-to-end retrieval effectiveness. We hypothesize that
more expensive ASR methods will generate more accurate transcripts, which
will, in turn, lift retrieval quality.

3 Research Questions and Our Contribution

In this paper, we study the effect of the choice of ASR model on podcast search
effectiveness. We aim to answer the following research questions:

RQ1: How does the quality of an ASR model change re-ranking effectiveness?
Due to the prohibitive cost of transcribing terabytes of audio data, we present
a preliminary experiment that explores how different transcription models can
influence the effectiveness of podcast re-ranking, which requires only a subset
of top-scoring results to be retranscribed. In particular, we assume the same,
fixed, candidate document set, and re-rank this set with alternative document
representations from different ASR models.

RQ2: How does retranscribing the entire corpus impact end-to-end effectiveness?
An answer to RQ1 allows us to understand the impact of the ASR model on re-
ranking effectiveness. However, this fails to capture the impact of the ASR model
on retrieval effectiveness, where documents are not just being re-ranked, but are
being retrieved from the whole corpus given a user query. Therefore, we identify
the best-performing ASR models to retranscribe the entire corpus and measure
end-to-end effectiveness.
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RQ3: Can dense retrieval alleviate the impact of ASR model choice for tran-
scription? In many real-world scenarios, resource limits require cheaper ASR
models to be used. So, we are interested in exploring if dense semantic search
methods can reduce the impact of ASR model choice. Our hypothesis is that
dense models may be more robust to perturbations in the text caused by ASR
methods than their lexical counterparts.

Reproducibility. In the interest of reproducibility, we make the code and ex-
perimental resources publicly available.

https://github.com/Watheq9/podcast_tr_vars

4 Experimental Setup

Here, we briefly outline our experimental setup, including the data and models
used in our experiments.

Collection and Queries. We use the Spotify Podcast Dataset [10], which in-
cludes 100,000 episodes of English-language podcasts, comprised of nearly 60,000
hours of audio speech. Each episode is paired with metadata (description, etc.),
and an automatically generated transcript using the Google Speech-to-Text API,
as of early 2020. Each episode is split into 2 minute segments, with a 1-minute
overlap; segments begin on the minute. In total, the collection contains 3.4 mil-
lion segments, with an average word count of 340±70 per segment. We used the
TREC 2020 and 2021 podcast topics (50 from each year), reporting results on
TREC 2020 for brevity. Our experiments use the keyword-only (title) queries.
The 2020 topics are categorized into three types: topical (35), re-finding (8), and
known-item (7). The 2021 topics are categorized into two types only: topical (40)
and known-item (10).

ASR Models. We experiment using six different ASR models:

1. The Baseline is the default transcription provided in the Spotify podcast
corpus [10], denoted as Spotify in the remainder of this work.

2. Vosk2 is a lightweight open-source speech recognition toolkit with support
for more than 20 languages. Our experiments use the small version that can
be run on a single CPU; it is our only CPU-based model.

3. Silero3 models are pre-trained enterprise-grade speech-to-text models. The
models are lightweight and optimized for real-time applications. We use both
the small and large models in this work.

4. Whisper [30] models are trained for speech recognition and translation tasks
using weak supervision, using 680,000 hours of noisy audio data. Whisper

2 https://alphacephei.com/vosk/
3 https://github.com/snakers4/silero-models

https://github.com/Watheq9/podcast_tr_vars
https://alphacephei.com/vosk/
https://github.com/snakers4/silero-models
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models are robust against geographical accents, background noise, and tech-
nical language (law and medicine, for example). One limitation of Whisper
is the chance of hallucinations, where the models may add words that are
not spoken in the transcribed audio. We experiment with the multilingual
version of tiny, base, small, and medium models.

5. WhisperX [8] is the state-of-the-art speech recognition model derived from
Whisper. WhisperX is faster than Whisper and generates more accurate
word-level timestamps using voice activity detection and forced phoneme
alignment techniques.We test the base and large-v3 versions.

6. Wav2Vec 2.0 [7] is a powerful, self-supervised speech representation model
that uses raw audio input. We use the large model, which is fine-tuned using
960 hours of LibriSpeech data [27].

Ranked Retrieval and Re-ranking Systems. We use the PyTerrier tool-
kit [22, 23] for indexing, retrieval, and evaluation. For point-wise re-ranking,
we use the MonoT5 model [26]; for list-wise re-ranking, we use the llm-based
RankZephyr [29] re-ranker. Re-ranking was performed using the llm-rankers
library [37].

Using the Massive Text Embedding Benchmark (MTEB) [25], we have se-
lected BAAI/bge-large-en-v1.5 [36] — an efficient yet effective pre-trained
model — to encode the corpora for our ranked dense retrieval experiments.
BM25 is used as a traditional lexical retrieval baseline [32]. One limitation of
our analysis is that all models are applied in a zero-shot manner; no fine-tuning
was conducted. We defer the question of whether our findings generalize under
fine-tuning to future work.

Metrics. Early precision metrics including rank-biased precision (RBP) [24]
with ϕ = 0.8 and 0.9 (assuming a user model with expected browsing depths of
5 and 10 documents, respectively) and normalized discounted cumulative gain
(NDCG) with a cut-off at 10 [15] are reported. These metrics are chosen as com-
plementary utility- and recall-oriented metrics [21]. The degree of uncertainty
caused by unjudged documents is also reported using the RBP residual. We
measure first-stage retrieval effectiveness using recall at depth 100. Significance
testing is performed using a two-tailed pairwise t-test, with a Bonferroni cor-
rection. We report significance at p < 0.01; the Spotify transcript is used as the
baseline throughout. Effectiveness metrics are annotated using down arrows to
represent negative significant differences.

5 Experiments

Re-Ranking Experiments. In order to answer RQ1, we use the top k = 100
segments (from BM25 on Spotify transcriptions) for each query, and map each
one back to the original episodes; this results in a subset of around 2,000 episodes,
totaling 54 GiB worth of audio. Next, we re-transcribed the episodes using each
of the candidate ASR models, and measure the throughput (efficiency). Then, we
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Table 1. Re-ranking the top 100 segments of a run generated by BM25 on the Spotify
corpus using RankZephyr (list-wise) re-ranker. R@100 is 0.515.

ASR model TSPS RBP ϕ = 0.8 RBP ϕ = 0.9 NDCG@10 # Unret.

Spotify – 0.569 + 0.142 0.491 + 0.174 0.473 –
Vosk-Small 21 0.527 + 0.160 0.459 + 0.190 0.451 404

Whisper-Tiny 42 0.530 + 0.160 0.463 + 0.189 0.441 256
Whisper-Base 35 0.542 + 0.147 0.472 + 0.182 0.452 191
Whisper-Small 21 0.544 + 0.141 0.476 + 0.175 0.453 166

Whisper-Medium 10 0.530 + 0.174 0.466 + 0.192 0.457 146
Wav2Vec2-Large 59 0.522 + 0.173 0.457 + 0.197 0.431 571

Silero-Small 635 0.500 + 0.188 0.446 + 0.207 0.422 738
Silero-Large 437 0.534 + 0.147 0.464 + 0.181 0.443 426

WhisperX-Base 115 0.527 + 0.166 0.465 + 0.190 0.443 74
WhisperX-LargeV3 52 0.549 + 0.149 0.476 + 0.184 0.450 43

re-segment each podcast episode — ensuring proper alignment with the original
data — to generate parallel segments, which can be re-ranked.

To measure the re-ranking effectiveness, we pass the same 100 candidate
segments (retrieved by BM25 on the Spotify corpus) to the re-ranker, replacing
the segment text with the text generated by each ASR model. This allows us to
isolate a static set of transcriptions and then measure the ranking quality. We
only report results using RankZephyr as it was the most effective algorithm. We
observed similar trends using MonoT5, albeit with lower overall performance.

Table 1 summarises the re-ranking results. The first column, TSPS, reports
the throughput for each model in transcribed seconds per second — the number
of seconds of audio that is transcribed per wall-clock second — showing a wide
spectrum of cost profiles that are available for current commercial ASR models.
Interestingly, in terms of early precision, the ASR model does not seem to have a
significant effect on the quality of the re-ranking, even when significantly cheaper
and presumably less accurate models are used. However, the rightmost column
presents a very different picture – it reports the total number of segments that
would not have been retrieved using a bag-of-words first-stage ranker due to
having no overlapping query terms with the segments. In other words, although
the ASR model does not appear to influence re-ranking effectiveness, large per-
turbations in the content generated from these methods could impact overall
retrievability [6], at least for lexical search models.

End-to-End Retrieval. While the previous experiment highlights potential
limitations of using alternative ASR models to transcribe the collection, the
effectiveness is influenced more by the re-ranking model used than the transcript
itself. To better understand how these effects translate to end-to-end retrieval,
we select three representative models (each with different cost/quality trade-
offs) and transcribe the entire 4TiB worth of audio data. After transcription,
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Table 2. Effectiveness of lexical and dense retrieval after re-transcribing podcasts using
three different ASR models. The top 100 segments are re-ranked using RankZephyr.

ASR model TSPS Retrieval Re-Ranking

R@100 RBP ϕ = 0.8 RBP ϕ = 0.9 NDCG@10

B
M

25

Spotify – 0.515 0.569 + 0.142 0.491 + 0.174 0.473
Silero-Small 635 ↓0.348 ↓0.416 + 0.306 ↓0.362 + 0.370 ↓0.352
Silero-Large 437 ↓0.382 0.460 + 0.238 0.396 + 0.297 ↓0.382

WhisperX-Base 115 0.500 0.542 + 0.187 0.464 + 0.237 0.458

D
en

se

Spotify – 0.387 0.389 + 0.438 0.336 + 0.503 0.347
Silero-Small 635 ↓0.283 0.419 + 0.397 0.353 + 0.478 0.367
Silero-Large 437 ↓0.306 0.367 + 0.460 0.306 + 0.541 0.319

WhisperX-Base 115 0.370 0.388 + 0.426 0.319 + 0.518 0.345

we segment the transcripts using the same methodology as the original Spotify
collection.

We then index the resulting segments using both a classic inverted index (for
BM25 retrieval) as well as a competitive dense retrieval model. Table 2 shows
the results of end-to-end retrieval, including first stage recall (left), and early
precision metrics on the re-ranked results (right). In contrast to Table 1, we ob-
serve that cheaper and faster ASR systems typically under-perform on baseline
transcription. The only exception is WhisperX, which is not significantly worse.
One potential reason is from bias in the judgment pool; it is clear from the
RBP residuals that a significant proportion of high-ranking documents are not
judged; this effect is even more pronounced in the lower half of the table (for
dense retrieval). Thus, we can answer RQ2 in the affirmative: using an alter-
native transcription can significantly impact end-to-end retrieval and ranking,
although it is not clear if these differences can be attributed to transcriptions
that are worse – they may just be different . Similarly, the answer for RQ3 can
be easily determined using Table 2: Dense retrieval performs significantly worse
than simpler lexical retrieval (except for Silero-Small), and cannot — at least in
a zero-shot setting — mitigate against the effectiveness loss induced from the
transcription model choice. However, running the same experiment on the 2021
queries showed dense retrieval to outperform BM25. We attribute this difference
to the out-of-pool issue, something that was also investigated by the top-ranked
TU Wien team in TREC 2021 [14].

6 Failure Analysis

Finally, we present several failure cases that emerged when comparing the top-
performing ASR model, WhisperX, to the Spotify baseline.

1. Incorrectly transcribing named entities is a common issue in speech
recognition, which also causes a noticeable degradation in effectiveness in our
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experiments. When comparing the top-retrieved segments using queries that
contain named entities, we observed examples where WhisperX was more capa-
ble of transcribing named entities and/or selecting the correct homophones. A
concrete example is the query “Imran Khan career” — In one of the relevant seg-
ments, Spotify transcribed Imran Khan as American, Imran as everyone, and
career as carrier . However, WhisperX transcribed both words correctly, which
boosts the rank of that segment from 28th (in the Spotify index) to 2nd.

2. Repetition is a well-documented issue in smaller language models, and we
observed multiple non-relevant segments that contain repetitions of the query
keywords, which boosts the ranking of the segment. For example, for the query
“podcast about podcasts”, a non-relevant segment appears at rank 1 because the
word podcast was erroneously repeated 106 times by the transcription algorithm.

3. Unjudged segments are a crucial but often overlooked limitation in the
TREC podcast collection. Based on the (RBP) residual values in Table 2, we can
observe that a large percentage of unjudged segments exist. Further investigation
of the top ranking segments retrieved with WhisperX, it is clear that relevant
segments are unjudged, which means they were not ranked highly by any pooled
system in the initial TREC experiments. In the future, having participants use
transcripts generated from a variety of ASR models would produce a more re-
usable collection.

7 Conclusion and Future Work

In this work, we examined the effects of transcript quality on podcast retrieval.
We hypothesized that effectiveness might be improved by simply creating more
accurate transcripts using newer, state-of-the-art audio-to-text models. However,
our experiments show that variance in transcriptions generally leads to a loss
in effectiveness, even when using state-of-the-art models. We attribute this to a
bias primarily towards the original transcription method used in the judgment
pool, and to repetition/hallucination in generative ASR models. In future work,
we plan to explore the impact of transcription errors on retrieval further, with
a specific focus on the issues identified in Section 6. We also plan to explore
additional quality and cost measurements – such as modeling the exact dollar
cost [20] or CO2 emissions [33] — to provide a more holistic and complete view
of current ASR options.
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