
Examining the Additivity of Top-𝑘 Query Processing Innovations
Joel Mackenzie

The University of Melbourne

Melbourne, Australia

Alistair Moffat

The University of Melbourne

Melbourne, Australia

ABSTRACT
Research activity spanning more than five decades has led to index

organizations, compression schemes, and traversal algorithms that

allow extremely rapid response to ranked queries against very

large text collections. However, little attention has been paid to the

interactions between these many components, and the additivity of

algorithmic improvements has not been explored. Here we examine

the extent to which efficiency improvements add up. We employ

four query processing algorithms, four compression codecs, and all

possible combinations of four distinct further optimizations, and

compare the performance of the 256 resulting systems to determine

when and how different optimizations interact. Our results over two

test collections show that efficiency enhancements are, for the most

part, additive, and that there is little risk of negative interactions.

In addition, our detailed profiling across this large pool of systems

leads to key insights as towhy the various individual enhancements

work well, and indicates that optimizing “simpler” implementations

can result in higher query throughput than is available from non-

optimized versions of the more “complex” techniques, with clear

implications for the choices needing to be made by practitioners.

KEYWORDS
Query Processing, Dynamic Pruning, Experimentation, Additivity

ACM Reference Format:
Joel Mackenzie and Alistair Moffat. 2020. Examining the Additivity of Top-𝑘

Query Processing Innovations. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM ’20), October
19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3340531.3412000

1 INTRODUCTION
Large web search engines serve results to many thousands of

queries each second, against collections containing billions of doc-

uments. While the cost of each search is inconsequential [52], in

aggregate there are enormous expenditures involved, for hardware

and for electricity (the latter for both processing and cooling). Query

processing cost minimization is thus a critical business driver for

search vendors. The deployment of low-latency systems is also an

important factor in terms of user satisfaction and retention [6, 46].

In any search system, there is a trade-off between efficiency and

effectiveness. To boost the latter, more complex similarity models

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00

https://doi.org/10.1145/3340531.3412000

are employed, with more extensive processing steps involved for

each query. Effectiveness is often measured using test collections

comprising a fixed set of documents, a fixed set of queries, and a

set of relevance judgments, with numeric scores calculated using

an agreed effectiveness metric. That framework allows large-scale

repeated experimentation across techniques, and like-for-like com-

parison of alternatives; it has also supported long-running projects

such as TREC and NTCIR. In a retrospective survey undertaken in

2009, Armstrong et al. [5] examined the additivity of a set of or-

thogonal techniques for improving effectiveness, finding that while

heuristics are broadly additive, it should not be assumed that im-

provements always “add up”. Other researchers have also explored

additivity across effectiveness enhancements [1, 25].

Here we examine the extent to which efficiency improvements

can be said to “add up”. We employ four query processing algo-

rithms, four compression codecs, and all possible combinations of

four distinct further optimizations, and compare the performance

of the 256 resulting systems on two large document collections to

determine when and how different optimizations interact. Query

processing time (50th and 95th percentiles) for the key task of top-𝑘

retrieval (that is, identifying and reporting the 𝑘 highest-scoring

documents as identified by a defined similarity heuristic) is the

primary yardstick used for comparison, but index size is also of

interest, plus, in the final analysis, implementation complexity as a

surrogate for programming cost.

Given this context, a range of questions can be articulated:

• RQ1: Do efficiency enhancements provide more benefit to weak

algorithms than to strong algorithms?

• RQ2: Are efficiency enhancements additive?

• RQ3: Is there any “volatility risk” introduced when efficiency

enhancements are added?

• RQ4: Can query throughput and index space be traded against

each other in a useful way?

• RQ5: What trade-offs exist beyond throughput and index space?

The remainder of this paper considers these five areas.

2 BACKGROUND
2.1 Additivity, Efficiency, and Reproducibility
As already noted, additivity of effectiveness has been explored

in some detail [1, 5, 25]. There has been less attention given to

additivity in the area of efficiency, and the focus has instead been

on reproducibility as an area of interest. For example, a sequence of

SIGIR workshops has explored ways in which researchers might

benefit by strategically building on each others’ work, and proposals

towards that goal have also emerged [22, 29]. In their study of

selective search, Kim et al. [26] explicitly consider the interaction

between topical sharding and dynamic pruning as a question of

efficiency additivity, and find that they provide independent benefit.

https://doi.org/10.1145/3340531.3412000
https://doi.org/10.1145/3340531.3412000

Recent work also demonstrated the additivity of static and dynamic

pruning techniques [34].

The earlier work of Armstrong et al. [5] also raised the issue

of baselines in experimentation, in comments intended as a guide

to researchers working in effectiveness, but equally pertinent to

efficiency-related activities. Commentary in regard to the use of

competitive baseline systems has also been provided for neural

ranking systems [61] and for recommender systems [14].

2.2 Scalable Query Processing
Modern search engines operate within strict latency constraints.

However, effective ranking models are often computationally ex-

pensive, with hundreds of scoring features per document [32]. A

common approach to balance these trade-offs is to utilize ranking
cascades [56], where a simple ranker is used to quickly find a set of

possibly relevant documents (candidate generation), which are then

re-ranked via more expensive models. The focus in this paper is on

first-phase ranking.

Bag-of-Words Similarity Scoring. Typical candidate generation
models assume term independence, with documents scored by ac-

cumulating independent term-document contributions. Given an

𝑛-term query Q = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, and a document 𝑑 , the score of 𝑑

with respect to Q is computed as a contribution sum over terms:

S(Q, 𝑑) =
𝑛∑
𝑖=1

C(𝑡𝑖 , 𝑑) ,

where C(𝑡, 𝑑) represents the score contribution to document 𝑑

derived from term 𝑡 . Document- and query- independent weights

can also be incorporated, with many similarity models then covered,

including the frequently-used BM25 model [45].

Efficient Index Traversal. To facilitate bag-of-words ranking an

inverted index is used, with a postings list stored for each unique

term 𝑡 and containing a sequence of document identifiers and their

term-frequency (tf) information [63]. Of the alternative storage

options we assume that a document-ordered arrangement is in use.

Document-ordered indexes store postings in ascending docu-

ment identifier order, facilitating Document-at-a-Time (DaaT) tra-

versal and scoring [13]. A min-heap of the top-𝑘 documents is

maintained, together with a threshold 𝜃 that tracks the lowest

score amongst those 𝑘 . Exhaustive RankedOR processing proceeds

by computing a score for every candidate document as the query

terms’ postings lists are merged; checking that score against 𝜃 ; and

updating the heap (and hence 𝜃) if necessary.

While simple, naïvely evaluating every document that contains

one or more of the terms is expensive, and a range of dynamic
pruning algorithms have been developed to reduce the number of

documents scored. In particular, Broder et al. [8] observed that if

per-term upper-bound contributions are pre-computed, they can

be used to quickly eliminate from consideration any documents

with no prospect of reaching a score of 𝜃 . To implement this idea,

the largest C(𝑡, 𝑑) in each postings list is stored as 𝑈𝑡 . During

processing, partial sums of the 𝑈𝑡 values guide the selection of

documents which might enter the top-𝑘 . Petri et al. [42] explain

this WAND mechanism in more detail, and provide pseudocode.

Ding and Suel [18] made further gains with their block-max

indexing approach. Instead of storing only one global 𝑈𝑡 bound

per postings list, which can lead to generous overestimates of true

scores, Ding and Suel suggest storing upper bounds on a per-block

basis (denoted by𝑈𝑡,𝑏), with multiple bounds within each postings

list. The resultant block-max WAND (BMW) algorithm operates in

the same way as WAND, but with the more accurate block-wise

upper-bound scores further accelerating query processing.

Most recently, Mallia et al. [35] showed that allowing the blocks

to be variable in size generates even tighter upper-bound scores. The
resulting VBMW algorithm represents the (current) state-of-the-art

for fast top-𝑘 query processing [35, 37], particularly when 𝑘 is small.

We note the existence of other algorithms and index organizations

such as both DaaT and TaaTMaxScoremechanisms [55] and Score-

at-a-Time index traversal [13], but focus on theWAND-family of

optimizations in this work. More details can be found in the recent

survey of Tonellotto et al. [52].

Compression Codecs. The representation of the stored index is a

second important facet of efficient system design. Integer compres-

sion techniques allow the index size to be substantially reduced,

and, at the same time, allow query throughput to be increased.

A wide range of such methods have been developed, each with

differing blends of attributes [44, 58, 63].

Mallia et al. [37] examine eleven approaches in the context of

DaaT processing, including comparing four representative codecs

in detail. Following their lead we employ the same four codecs:

OptPForDelta (OptPFD) [60]; Partitioned Elias-Fano (PEF) [41]; Vec-
torized Binary Packing (SIMD-BP128) [27]; and a derivative of Vari-
able Byte known as Varint-G8IU [50]. Details of these methods can

be found in the survey by Pibiri and Venturini [44].

3 EFFICIENCY INNOVATIONS
We now turn to four distinct optimizations which can be applied

individually or in combinations with any of the four processing

regimes (RankedOR,WAND, BMW, and VBMW) that were sum-

marized in Section 2. Table 1 lists these optional “add-ons”.

3.1 Factor P: Predicting the Heap Threshold
Dynamic pruning algorithms use the current heap threshold 𝜃 as

a target value to identify documents for scoring. The higher that

value, the fewer documents scored. In ordinary processing, 𝜃 is

initialized to the lowest score that can be assigned to any document,

denoted by ∇, typically either zero or negative infinity. During

query processing, 𝜃 then monotonically increases towards its final

value Θ𝑘 , corresponding to the 𝑘 th highest scoring document for

the query Q.

A key observation then follows: initializing𝜃 to some value closer

to Θ𝑘 (but not exceeding it) will likely result in fewer documents

being scored, and hence faster query processing. This leads to

methods for predicting the min-heap threshold to determining a

suitable initialization𝜃 = Θ̂𝑘 in order to accelerate query processing.

Figure 1 illustrates this idea.

Table 1: The four add-on optimizations that are explored.

Optimization Key Description

Prediction P At index time, the 𝑘 th highest score for each postings list is computed and stored.

At query time, the maximum of these values across the query terms is used to initialize the min-heap threshold.

Quantization Q At index time, the score of every posting is computed and quantized into a single 𝑏-bit integer value.

At query time, scoring involves adding the corresponding quantized scores together.

Reordering R At index time, the document identifiers are re-ordered, resulting in better compression and term locality.

Stopping S At query time, stopwords are removed from the query if possible, allowing fewer postings to be processed.

Document upper-bound Scored, enters top-k Scored, rejected

Bypassed (not scored) Default ThresholdPredicted Threshold

Documents in collection

k

Sc
or

e
an

d
up

pe
r-

bo
un

d

Bypassed if heap threshold predicted, scored otherwise

Figure 1: Threshold prediction, with 𝑘 = 3 documents being iden-

tified. The blue line shows normal processing, where the threshold

is initialized to a minimum value; the red line shows the effect

of using an initial score threshold. Orange dots depict documents

which would be scored when the default threshold is used, but

would be skipped if the higher initial value was used. As long as

the initial threshold is lower than the final value Θ𝑘 , the answer

set is guaranteed to be correct (adapted from Petri et al. [43]).

Prediction Mechanisms. A range of methods for estimating Θ̂𝑘

have been explored, including both safe approaches (which guaran-

tee that Θ̂𝑘 ≤ Θ𝑘), and unsafe approaches (where Θ̂𝑘 > Θ𝑘 might

only be discovered after the query has been processed).

A cheap-yet-effective approach which is deterministic and safe

was noted by Daoud et al. [15] and explored in detail by Kane and

Tompa [24]. It involves storing the 𝑘 th highest scores for a pre-

determined and fixed set such as 𝑘 ∈ {10, 100, 1000}. Then, upon
receiving a query Q, the threshold 𝜃 can be initialized as the maxi-

mum of the appropriate set of 𝑘 th scores for the candidate terms,

denoted as Q𝑘 , exploiting the fact that there must be 𝑘 documents

in the collection with a score ≥ Q𝑘 because of that term alone. In

the case where the search-time 𝑘 is not among the set of indexed 𝑘 ,

the next largest should be used: for example, if 20 documents are

to be retrieved and 𝑘 ∈ {10, 100, 1000} were pre-computed at index

time, the largest of the 𝑘 = 100 term thresholds should be used

as Q𝑘 . Other deterministic methods are possible, including those

which require various forms of index tiering, stratification, and

preliminary evaluation [9, 16, 20, 26, 51]. Other authors consider

prediction in the context of caching [59].

Unsafe methods have also been explored [11, 38]. One approach

that has been successful is to employ machine-learning to predict

Θ̂𝑘 for each query. The downside of unsafe methods is that if Θ̂𝑘 >

Θ𝑘 , the query may not contain the correct top-𝑘 documents, and

follow-up processing must be conducted if correctness is to be

assured [43].

Configurations Measured. We examine prediction (factor “𝑃”)

via the deterministic Q𝑘 method, setting the initial heap threshold

to the maximum of the 𝑘 th highest “next greater than or equal

to 𝑘” scores across the query terms. The absence of prediction

corresponds a default “cold-start” setting, with 𝜃 initialized to ∇.

3.2 Factor Q: Index Quantization
The computation of document/query similarity scores, required to

accurately rank documents, is another expensive aspect of query

processing. The underlying models used to compute similarity

scores often rely on floating point arithmetic, including divisions,

and hence require many CPU cycles per document scored.

Anh et al. [4] note that this cost can be mitigated by computing

all similarity contributions offline, and storing each such impact
score in the inverted index, rather than the raw elements of the

computation. Since similarity functions typically generate real-

valued contributions, it is expensive to store them for each posting;

instead, they are quantized into𝑏-bit integers in the range [1, 2𝑏−1].
Then, at query time, processing a top-𝑘 query involves summing

the corresponding 𝑏-bit integers, with integer addition requiring far

fewer clock cycles than floating point multiplication and division.

Various quantization methods have been explored, including

those which provide higher fidelity in the lower or higher score

ranges. However, the best approximation of the original score dis-

tribution can be computed with uniform quantization [4, 12], which
approximates the score distribution of the impacts across 𝑏 buckets,

resulting in very similar effectiveness to the original tf index when

a sufficiently large value of 𝑏 is used [12].

ConfigurationsMeasured. We examine quantization (factor “𝑄”)

via the uniform quantization approach of Anh et al. [4], with the

quantized impacts being stored in lieu of the tf values. At query

time, scoring involves summing these quantized values. The ab-

sence of quantization corresponds to a default tf index, with score

contributions computed during query processing.

3.3 Factor R: Document Reordering
Postings lists store document numbers in increasing order, with

most compression techniques exploiting the fact that in this arrange-

ment the differences between successive identifiers (the 𝑑-gaps) are,

on average, very small. Further savings arise if each term’s occur-

rences are non-random through the collection – the ideal situation

being when they are clustered into widely separated dense regions,

with runs of small 𝑑-gaps. Document reordering, also known as

document identifier reassignment, is the process of reassigning the

document identifiers, so that when the index is formed, documents

that are “like” each other (in that they have many terms in common)

are placed near to each other [49].

In addition to saving index space, document reordering can also

improve query throughput [19, 37, 60], with newer approaches

jointly optimizing for both space and time [57]. While improve-

ments to query processing efficiency from reordering are not well

studied, the basis for gains is clear: in conjunctive processing, doc-

ument reordering produces longer skips and fewer decompressions

[60]; and the more compact a representation, the more likely it will

be cache friendly.

Document Reordering Approaches. Early work focused on us-

ing the Traveling Salesman Problem (TSP) as a heuristic to find

tours across a graph of document-to-document similarity values,

thereby clustering similar documents together [7, 19, 47]. Silvestri

[48] explores a series of straightforward heuristics, showing that

ordering a collection by the underlying document URLs provides

improved compression rates compared to random ordering. Sort-

ing by URL works well because documents from the same website

usually share many common terms, increasing the clustering of the

underlying postings lists.

Recently, Dhulipala et al. [17] describe a method for directly

optimizing the expected storage cost of the encoded index. They

construct a bipartite graph between the terms and the documents of

the index, and then split the graph into two halves. After each split,

an estimate is made of the compression gain generated by swapping

each document from one partition to the other. When positive

gains are observed, the algorithm swaps documents between the

two partitions and iterates, stopping after a fixed number of cycles.

The process then recurses on the two partitions, stopping at a pre-

defined depth. This elegant approach provides the current state-of-

the-art for both graph and index reordering [17, 33].

Configurations Measured. We examine reordering (factor “𝑅”)

via Dhulipala et al.’s BP algorithm [17, 33], applying it as a pre-

indexing step. The absence of reordering corresponds to an index

built with randomly shuffled document identifiers. We note that

while other reference orderings are possible [37], randomizing the

ordering prevents any artifacts that might arise in the experimenta-

tion as a result of (the often unknown) document collection strategy.

3.4 Factor S: Stopping
One of the simplest possible optimizations, stopping involves re-

moving commonly observed terms from either documents (during

indexing) or queries (as they are parsed prior to being evaluated).

Applying stopping during indexing allows for a smaller index, but

is inherently lossy; queries composed of stop words such as “to be

Table 2: Details of test collections.

Corpus Documents Unique Terms Postings

Gov2 25,205,179 39,180,841 5,880,709,591

ClueWeb12B 52,343,021 165,309,502 15,319,871,265

or not to be” cannot be answered on a stopped index. As such, a

more flexible approach is to apply the stop list to incoming queries.

Stopping is not safe, and the result of executing a stopped query

may differ from that obtained for the original query.

ConfigurationsMeasured. Weexamine query-time stopping (fac-

tor “𝑆”) via the Indri stop list, which contains 418 common English

terms.
1
The absence of stopping simply means the queries are un-

changed. Queries which were empty after stopping were discarded

from both query logs to avoid biasing the experimental analysis.

3.5 Modes, Enhancements, and Additivity
The key theme explored in this work is determining which com-

binations of these techniques – the four query processing modes

described in Section 2, and the four possible enhancements to them

that have been described in this section – are complementary, and

hence additive. The alternative is for different “improvements” to

be exploiting the same underling inefficiencies in different ways,

and hence be substitutes for each other and non-additive when

combined. A further dimension is introduced when the question

of compression codec is added, since decompression costs while

processing the index also involve a trade-off between time and

space. The next section describes detailed experiments over a large

number of implementation combinations to explore these issues.

4 EXPERIMENTS
4.1 Experimental Setup
Hardware and Software. All experiments were performed en-

tirely in-memory on a Linux machine with two 3.50 GHz Intel Xeon

Gold 6144 CPUs and 512 GiB of RAM. Timings are reported as

the average of three independent runs. The document collections

were indexed using Indri 5.11with Krovetz stemming, and then con-

verted to a format readable by PISA [36], which was used to conduct

all subsequent indexing and query processing experiments.
2

Datasets and Queries. Two public collections are used:

• Gov2,3 around 25 million .gov sites crawled during 2004.

• ClueWeb12B,4 the “B” portion of the 2012 ClueWeb crawl, con-

taining around 52 million web documents.

Table 2 reports statistics after indexing by Indri.
The publicly available Million Query Track (MQT) queries from

the 2007, 2008, and 2009 TREC Million Query Track [2, 3, 10] were

used, with 5,000 queries sampled from the 60,000 candidates.5 The

sampling process selected 1,000 queries of each length from 1 to 4,

plus a further 1,000 queries containing 5 or more terms.

1
http://www.lemurproject.org/stopwords/stoplist.dft

2
https://github.com/pisa-engine/pisa/→ Commit 16a9c33, 27th of March, 2020.

3
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm

4
http://lemurproject.org/clueweb12/

5
https://trec.nist.gov/data/million.query.html

http://www.lemurproject.org/stopwords/stoplist.dft
https://github.com/pisa-engine/pisa/
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
http://lemurproject.org/clueweb12/
https://trec.nist.gov/data/million.query.html

Table 3: Space (GiB) for the postings lists of the ClueWeb12B index

using two orderings, four compression codecs, and either tf form

(top) or quantized form with 𝑏 = 9 (bottom).

Ordering

Term Frequency Index

OptPFD PEF SIMD-BP128 Varint-G8IU

Random 20.1 18.5 25.2 37.0

BP 13.9 13.0 20.0 35.0

Ordering

Quantized Index

OptPFD PEF SIMD-BP128 Varint-G8IU

Random 27.0 27.4 28.1 37.6

BP 21.4 22.4 25.1 35.5

FixedParameters and Settings. For document ranking, theBM25
[45] model was used, as it is a cheap-yet-effective approach that

permits dynamic pruning [42]. Recent work has explored subtle

variations of BM25 [23, 54]; the PISA overview [36] provides a

precise definition of the computation employed. Parameter values

of 𝑘1 = 0.4 and 𝑏 = 0.9 were used [53].

Where block-based compression was used, postings lists were

encoded as fixed-length blocks of 128 integers, with blocks of less

than 128 values encoded with Binary Interpolative coding [39].

The block-max score structures used by BMW and VBMW employ,

respectively, fixed and variable length blocks, containing an average

of 40 postings each [35].

Where quantized indexes were employed, term-document con-

tributions were mapped into 256 buckets (𝑏 = 8) for Gov2, and
into 512 buckets (𝑏 = 9) for ClueWeb12B. These choices provide
sufficient resolution to avoid effectiveness loss [12, 13].

4.2 Space Consumption
Space consumption wasmeasured for two index orderings (Random
and BP), four compression codecs, and for both plain tf values and

quantized impacts. In the interests of brevity only the ClueWeb12B
results are shown, with the same trends observed for Gov2.

Postings Lists. Table 3 reports the size, in GiB, of the postings lists
for all sixteen different ClueWeb12B indexes. Two trends emerge:

first, applying the BP reordering improves the space occupancy

of the inverted indexes, irrespective of the compression codec em-

ployed; and second, the quantized indexes are larger than the tf -
based ones, as expected. The OptPFD and PEF codecs provide the

best compression, with PEF slightly smaller over tf indexes, and

the converse true for quantized indexes.

The Varint-G8IU codec is less sensitive to both index ordering

and to quantization. This is because Varint-G8IU is a byte-aligned

encoder, and thus only realizes gains when the 𝑑-gaps in the docu-

ment identifier lists are reduced [37].

Indexes based on a URL-sorted arrangement were also measured,

and were between 500 MiB and 5 GiB larger than the equivalent

BP index, depending on the codec used. An interesting aspect of

these results is that they both reproduce the findings of Mallia et al.

[37] and also extend the comparison to include quantized indexes,

previously only examined in isolation [12, 13].

Table 4: Space overhead (GiB, ClueWeb12B) to support dynamic

pruning, with the𝑈𝑡 entry the cost of storing upper-bound scores

(32 bits per postings list), and the Q𝑘 entry the total cost of storing

the 𝑘 th highest scores in each sufficiently long postings list, with

𝑘 ∈ {10, 100, 1000}. The other entries are the cost of storing block-
level upper-bound scores, with 64 bits required per block (32 bits for

an upper-bound score, and 32 bits for a block-bounding document

number). The bounds in a quantized index have very similar costs.

𝑈𝑡 Q𝑘
Mean Block Size

16 32 40 64 96 128 256

0.62 0.05 8.21 4.71 4.01 2.96 2.38 2.09 1.66

Upper-Bound Scores andThresholds. Upper-bound scoresmust

be kept on a per-list (WAND) or per-block (BMW, VBMW) basis,

where blocks may or may not be of fixed size. Table 4 summarizes

the cost of these bounds for ClueWeb12B. The list-wise upper-

bounds, denoted 𝑈𝑡 , cost only 32 bits per postings list, but are

stored for every term. On the other hand, the block-wise upper-

boundsmust also be accompanied by an “endpoint” value describing

the documents spanned by the block, and cost 64 bits per block.

The total cost of storing block-wise upper-bounds then depends

on the total number of blocks stored, and hence on their average

size. Larger blocks result in a smaller memory footprint, but also

generate smaller throughput improvements [35].

In the experimental configurations, block-wise upper-bounds

added an overhead of between 3% to 67% for Gov2 (not shown),

and of between 4% to 63% for ClueWeb12B (Table 4), with the exact

amount determined by both the compression codec and block con-

figuration; for example, the worst-case overhead for ClueWeb12B
arises when using a mean block size of 16 and a BP ordered tf
index with PEF encoding. There is a clear trade-off between the

compression codec used and the space available for metadata such

as block-wise upper-bound scores; and all other things being equal,

better compression may permit smaller block sizes.

Table 4 also lists the cost of adding up to three “𝑘 th highest

scores” to each postings list. Large values of 𝑘 require less storage

overhead, as fewer postings lists are likely to have a length ≥ 𝑘

elements [24]. For example, across its 39,180,841 unique terms, the

Gov2 index maintains 3,336,298 scores for 𝑘 = 10; another 818,295

for 𝑘 = 100; and just 117,532 scores for 𝑘 = 1000. In total, keeping

𝑘 th-largest scores for 𝑘 ∈ {10, 100, 1000}, adds an overhead of

between 0.1% to 0.5% for Gov2 (not shown), and between 0.1% to

0.4% for ClueWeb12B, with the percentages taken relative to the

smallest and largest compressed indexes.

4.3 Query Processing Latency
The next experiments compare query latency, considering each

of the four query processing mechanisms (Section 2), taken with

and without each of the four enhancements (Section 3, considering

all combinations), and coupled with each of the four compression

codecs. That is, a total of 4× 2
4 × 4 = 256 systems are explored. For

brevity, in this section results are only reported for the SIMD-BP128
codec, as it was found to be the fastest (and also by Mallia et al.

[37]). The other codecs are explored further in Section 5.2.

k = 10 k = 1000

G
ov2

C
lueW

eb12B

0 1 2 3 4 0 1 2 3 4

3

10

30

10

30

100

Number of Enhancements

T
im

e
[m

s]

RankedOR BMW

Figure 2: Median processing latency (millisec) as a function of the

number of enhancements, with BMW a representative dynamic

pruning technique. Similar trends arise forWAND and VBMW.

Overview. As a first “high altitude” view, Figure 2 presents median

query latency for 32 of the systems, those employing RankedOR
and BMW processing, measured using two different ranking depths

𝑘 , and two different document collections. The slightly unorthodox

horizontal scales in each pane count the number of enhancements

applied, drawn from the 𝑃 , 𝑄 , 𝑅, 𝑆 palette (Table 1), starting with

none, and ending with all of them. Hence there are 1, 4, 6, 4, and 1

points plotted against the five axis values for each system.

Within each pane, the downward trends show that adding en-

hancements to a given algorithm does indeed tend to result in

improved throughput, with more enhancements leading to larger

gains. Some exceptions are evident for the RankedOR algorithm,

which does not employ dynamic pruning when traversing the in-

dex. That is, certain combinations of enhancements do not benefit

RankedOR, and can even lead to slight throughput decreases. We

delve deeper into these overall outcomes shortly. Irrespective of

the processing method, the fastest configuration was always the

one that employed all four enhancements, indicating that this set

of optimizations does indeed behave additively.

Table 5 provides more detail, reporting median and tail latencies

for each distinct algorithm/enhancement combination when ap-

plied to ClueWeb12B. Substantial improvements can be achieved by

employing the method-agnostic enhancements. For example, the

exhaustive RankedOR algorithm obtains a 2.5× speedup (median)

and a 4.0× speedup at the tail. The dynamic pruning algorithms

show even greater gains, of between 3.6× to 4.7× at the median,

and 3.1× to 4.6× at the tail.

Working down each column in the table is also informative. For

example, the single most effective optimization for RankedOR is

stopping, followed by quantization. On the other hand (and perhaps

unsurprisingly), the dynamic pruning approaches derive the great-

est relative benefit from index reordering. The overall benefit ac-

cruing from each enhancement is considered further in Section 5.1.

Comparing Algorithms. While most configurations follow the

expected pattern of RankedOR being less efficient than WAND,
WAND being less efficient than BMW, and BMW being less efficient

than VBMW, there are also some interesting exceptions. Firstly,

with the default configuration, we note that WAND is only slightly

slower than both BMW and VBMW, and actually outperforms them

when considering tail latency. Similar outcomes are present for all

single optimizations with the exception being reordering, which

greatly improves the block-based algorithms. Similar trends can be

observed in the two-optimization group, whereWAND outperforms

its more advanced counterparts in two of seven cases for median

latency, and in four of seven cases for tail latency. Again,WAND
outperforms BMW and VBMW on median latency for one and two

configurations (of four) when considering three-optimizations, and

is only narrowly beaten when all four optimizations are considered.

Further analysis, across both algorithms and enhancements, re-

veals thatWAND with all optimizations enabled outperforms every

instance of BMW which used two or fewer optimizations, and also

outperforms two of the four BMW configurations which employ

three optimizations. Furthermore, WAND with all optimizations

outperforms most instances of VBMW using two or fewer optimiza-

tions, and even outperforms VBMW with P+Q+S. This behavior
can be observed when comparing the tail latency of RankedOR
with full optimizations to the default and some single-optimization

instances of BMW and VBMW.

These relative outcomes raise key questions for practitioners,

who must balance the effort spent adding enhancements to a cur-

rent implementation against the likely benefit of commencing a

completely new implementation of a nominally “better” underlying

processing approach. Section 6 discusses this issue further.

5 UNDERSTANDING THE INTERACTIONS
We now turn our focus to the way that optimizations and algo-

rithms interact, and in particular, to whether there is a risk of

overall throughput gains masking increased volatility in the cost

of individual queries. To facilitate that analysis, for each of the

four enhancements (Section 3) all possible system pairs are formed,

first without that enhancement, and then with it. Let 𝑆𝐵 denote

a baseline system that does not include a particular optimization

𝑂 ∈ {𝑃,𝑄, 𝑅, 𝑆}, and 𝑆𝐼 denote 𝑆𝐵 with the further inclusion of 𝑂 .

For example, 𝑆𝐵 might beWAND+𝑃+𝑄 , in which case there are two

possible 𝑆𝐼 systems:WAND with stopping added as well, to yield

theWAND+𝑃+𝑄+𝑆 system; and the other being theWAND+𝑃+𝑄+𝑅

combination. For each optimization 𝑂 ∈ {𝑃,𝑄, 𝑅, 𝑆} there are thus
eight possible 𝑆𝐵, 𝑆𝐼 pairs for each of the four underlying processing

regimes. For each such pair, the execution deltas between the 𝑆𝐵
and 𝑆𝐼 systems are measured on a per-query basis, with positive

deltas representing improvements resulting from 𝑂 being added,

and negative deltas representing degradations.

5.1 Latency and Profiling
Figure 3 shows execution deltas for three different evaluation cost

metrics: median query latency; the number of postings process; and

the number of postings blocks decoded over ClueWeb12B.

Predicting Thresholds. The leftmost group in each pane sum-

marizes improvements accruing from score prediction, factor 𝑃 . It

Table 5: Query processing latency (millisec) for four underlying methods, grouped into five categories based on the number of optimizations

employed, for 𝑘 = 1000 and ClueWeb12B. Speedups, shown in brackets, are computed with respect to the Default systems in the first row.

The most efficient run in each category is highlighted in blue, and the most efficient run in each column is highlighted in red.

Factors

Median Latency (𝑃50) Tail Latency (𝑃95)

RankedOR WAND BMW VBMW RankedOR WAND BMW VBMW

Default 135.7 49.1 45.6 45.6 1425.6 263.3 385.0 366.2

P 130.0 (×1.0) 45.5 (×1.1) 41.4 (×1.1) 39.1 (×1.2) 1395.4 (×1.0) 262.1 (×1.0) 380.0 (×1.0) 363.4 (×1.0)

Q 98.7 (×1.4) 32.0 (×1.5) 36.5 (×1.2) 33.3 (×1.4) 1132.4 (×1.3) 224.4 (×1.2) 317.6 (×1.2) 307.8 (×1.2)

R 148.0 (×0.9) 26.6 (×1.8) 19.2 (×2.4) 17.9 (×2.6) 1367.0 (×1.0) 146.0 (×1.8) 158.3 (×2.4) 133.5 (×2.7)

S 87.9 (×1.5) 37.0 (×1.3) 33.5 (×1.4) 34.8 (×1.3) 501.8 (×2.8) 191.5 (×1.4) 231.6 (×1.7) 249.6 (×1.5)

P+Q 98.1 (×1.4) 29.4 (×1.7) 33.3 (×1.4) 30.3 (×1.5) 1153.3 (×1.2) 222.6 (×1.2) 314.1 (×1.2) 308.1 (×1.2)

P+R 145.9 (×0.9) 20.7 (×2.4) 16.2 (×2.8) 13.3 (×3.4) 1318.6 (×1.1) 138.5 (×1.9) 153.6 (×2.5) 126.4 (×2.9)

P+S 88.0 (×1.5) 34.1 (×1.4) 30.8 (×1.5) 31.2 (×1.5) 503.8 (×1.0) 190.7 (×1.4) 230.0 (×1.7) 246.5 (×1.5)

Q+R 88.9 (×1.5) 20.7 (×2.4) 18.5 (×2.5) 16.0 (×2.8) 1054.8 (×1.4) 119.7 (×2.2) 144.9 (×2.7) 123.3 (×3.0)

Q+S 62.6 (×2.2) 24.9 (×2.0) 27.6 (×1.7) 26.4 (×1.7) 415.3 (×3.4) 161.2 (×1.6) 207.5 (×1.9) 207.3 (×1.8)

R+S 102.7 (×1.3) 20.3 (×2.4) 14.8 (×3.1) 13.5 (×3.4) 478.6 (×3.0) 106.6 (×2.5) 95.5 (×4.0) 88.9 (×4.1)

P+Q+R 88.0 (×1.5) 15.8 (×3.1) 14.6 (×3.1) 11.8 (×3.9) 1052.7 (×1.4) 113.3 (×2.3) 135.9 (×2.8) 116.3 (×3.1)

P+Q+S 61.0 (×2.2) 23.5 (×2.1) 25.6 (×1.8) 23.9 (×1.9) 412.5 (×3.5) 160.0 (×1.6) 201.9 (×1.9) 205.9 (×1.8)

P+R+S 100.9 (×1.3) 17.1 (×2.9) 12.8 (×3.6) 10.9 (×4.2) 479.0 (×3.0) 103.8 (×2.5) 93.7 (×4.1) 86.4 (×4.2)

Q+R+S 56.2 (×2.4) 15.5 (×3.2) 13.1 (×3.5) 11.8 (×3.9) 358.9 (×4.0) 86.0 (×3.1) 88.0 (×4.4) 82.9 (×4.4)

P+Q+R+S 54.7 (×2.5) 13.8 (×3.6) 11.6 (×3.9) 9.7 (×4.7) 356.1 (×4.0) 84.4 (×3.1) 86.5 (×4.5) 80.3 (×4.6)

Time [ms] Postings Scored [Thousands] Blocks Decoded [Thousands]

P Q R S P Q R S P Q R S
-1000

-100

-10

0

10

100

1000

-10000
-1000

-100
-10

0

10
100

1000
10000

-1000

-100

-10

0

10

100

1000

D
el

ta

RankedOR WAND BMW VBMW

Figure 3: Execution deltas over all queries for each 𝑆𝐵, 𝑆𝐼 pair, with each box/whisker element representing 8 × 5,000 individual deltas.

Three different facets of query execution (ClueWeb12B, 𝑘 = 1,000) are shown: median latency (left); postings evaluated (middle); and blocks

decoded (right). Note that the 𝑦-axis has been transformed using an inverse hyperbolic arcsine function, which exhibits log-like properties

but is defined for values of 𝑦 ≤ 0.

results in a small increase in query throughput when aggregated

across all 𝑆𝐵, 𝑆𝐼 pairs, with a slightly larger effect as the algorithm

becomes more complex. This trend arises because as the algorithms

become better at estimating true upper-bound scores, more prun-

ing takes place, and fewer blocks are decoded. However the only

benefit that RankedOR receives is fewer heap operations.

Quantization. The second group in each pane, quantization, also

has a positive impact on all algorithms, but becomes less effective

for more the more complex algorithms, with RankedOR benefiting

the most. This trend is accounted for by the volumes of postings

being scored (center pane); methods which score the most postings

benefit the most from quantization.

Quantization induces more scoring and decoding in the dynamic

pruning algorithms on average, with the time saved in each oper-

ation still allowing net reductions in query latency. Quantization

can also lead to highly negative execution deltas, with some queries

taking one second longer than if they were processed without quan-

tization. Detailed investigation revealed this to be a consequence of

large numbers of score ties in the rankings, compounded by the min-

heap implementation in the code-base used for these experiments

admitting documents based on the liberal testS ≥ 𝜃 . The likelihood

of documents having tied scores is much higher when quantization

is being used, especially with single-term queries. While there is

no right answer regarding specific tie-breaking functionality [28],

changing to a strict S > 𝜃 heap entry requirement would be one

simple way to accelerate retrieval [62].

Index Reordering. This third factor has a strong positive effect

on the dynamic pruning algorithms, especially for the block-based

methods. Reordering also improves RankedOR speed – there is

no impact on the volume of postings or blocks examined, but the

reordered indexes are smaller and hence faster to decode.

Index reordering induces more scoring for WAND, but at the
same time yields a large reduction in the number of blocks decoded,

suggesting that reordering improves the locality of documents –

when one document must be scored in a (compression) block, there

is a high chance of scoring others in that block.

To quantify the extent of the clustering in the postings lists,

a postings accuracy is computed for every posting in each index,

defined as that posting’s impact as a fraction of the associated

block-max impact, accuracy(𝑡, 𝑑) = C(𝑡, 𝑑)/𝑈𝑡,𝑏 . Figure 4 plots

these accuracies as cumulative distributions across the Random
and BP orderings of Gov2 and ClueWeb12B, for both Fixed and

Variable block indexes. The notable and consistent relationship

between the blue lines (random ordering) and red lines (reordered)

illustrates why reordering has such a pronounced positive effect

on the block-based dynamic pruning algorithms.

Stopping. While stopping leads to savings on average, it seems

counterintuitive that stopping queries could lead to increases in
postings scored and blocks decoded (Figure 3). In fact, in some cases

stopping does make query processing slower, because it can remove

highly discriminatory term combinations. Particularly egregious

cases arise when queries are stopped down to single terms. For

example, “signs of ms” → “signs” , which removes much of the

benefits of dynamic pruning, especially forWAND which then only

has a single upper-bound available to it. This particular example

leads toWAND evaluating around 8.7 million extra documents, and

adds up to 120 ms to the processing time. Practitioners might thus

wish to consider special optimizations for single-term queries.

In terms of effectiveness, the risk of stopping can be quantified

by computing the overlap between a stopped ranking and the cor-

responding unstopped ranking, noting that one important use-case

of these methods is in the first phase of a multi-stage ranker, where

it is the set of document that is required, and not their exact order.

At 𝑘 = 1,000 the mean (over queries, for ClueWeb12B) overlap
between non-stopped processing and stopped processing is 96.7%,

with 1,564 of the queries affected. The risk of effectiveness loss

resulting from quantization can be similarly computed: quantiza-

tion alone also results in an overlap of 96.7%, and quantization plus

Fixed Variable

G
ov2

C
lueW

eb12B

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1

0

0.25

0.50

0.75

1

0

0.25

0.50

0.75

1

Posting Accuracy

Fr
ac

ti
on

 o
f D

at
a

Random BP

Figure 4: Posting accuracy for Random and BP index orderings,

Fixed and Variable blocks, and Gov2 and ClueWeb12B. Reorder-
ing the collection improves accuracy, since similar documents are

clustered near each other in the postings lists.

0

1

1

1

1
2

2

2

2

2

2 3

3

3 3410

20

30

40

26 28 30 32
Space [GiB]

T
im

e
[m

s]

(a) Quantization

0

1

1

1

1
2

2

2

2

2

2 3

3

3 3410

20

30

40

26 28 30 32
Space [GiB]

T
im

e
[m

s]
(b) Reordering

Figure 5:Median latency and space differences due to quantization

(left), and reordering (right), for VBMW with 𝑘 = 1,000 across

ClueWeb12B. Each point is marked by a number between 0 and 4 to

indicate the number of enhancements in operation, with 0 denoting

the Default arrangement, and along each edge, the corresponding

count increases by one. The short grey vertical edges indicate the

orthogonal threshold prediction and stopping options, which add

negligible space but reduce the latency.

stopping achieves 94.1%. Failure cases tend to involve aggressive

stopping, for example “what to do for burns” → “burns” , or short
queries with flat term distributions, for example “news” .

5.2 Time Versus Space
Trade-Offs. Reduced processing latency is often achieved at the

cost of increased index space, meaning that the trade-off between

them is also of critical interest. Figure 5 shows the interaction

between time and space for ClueWeb12B and VBMW processing,

in the left pane highlighting the eight 𝑆𝐵, 𝑆𝐼 pairs that correspond

to quantization, and in the right pane highlighting the eight 𝑆𝐵, 𝑆𝐼
pairs that correspond to reordering. The efficiency gains due to

R+S

R+S P+R+S

R+S
P+R+S

R+S

P+R+S

P+R+S
R+S

P+R+S
R+S

P+R+S

Q+R+S

P+Q+R+S

Q+R+S

P+Q+R+S

100

200

500

1000

2000

15 20 25 30 35 40
Space [GiB]

T
im

e
[m

s]

RankedOR WAND BMW VBMW

OptPFD PEF SIMD-BP128 Varint-G8IU

Figure 6: Tail latency (95th percentile, millisec, for 𝑘 = 1,000)

versus total index space (GiB) for 256 combinations of processing

mode, enhancements, and compression codec, forClueWeb12B. The
Pareto frontier is defined by the larger points, each labeled with a

configuration description. Note the log scale on both axes.

quantization, which are in the range of 2 ms per query (P+R+S →
P+Q+R+S) to 17 ms (Default → Q) require a non-trivial amount

of extra space. However, index reordering has the opposite effect,

resulting in both faster processing and smaller indexes.

The Big Picture. Figure 6 compares all 256 system configurations

(four processing modes, 2
4
combinations of four enhancements, and

four compression codecs), plotting tail latency in milliseconds as a

function of index space, for ClueWeb12B and with 𝑘 = 1,000. The

labeled markers represent the Pareto frontier, with the unlabeled

grayed-out markers indicating other systems shadowed by the

frontier; and with marker shapes indicating processing modes, and

marker colors indicating compression codecs.

At the “fast” end of the frontier, the SIMD-BP128 codec is domi-

nant, whereas at the “compact” end, PEF and OptPFD are the best

choices; with Varint-G8IU not appearing at all. Likewise, no in-

stance of BMW appears on the frontier, as it is always edged out

by VBMW, which uses the same amount of space and is slightly

faster. However, WAND occurs several times on the frontier – it

performs well when tail latency is important (Table 5). In terms

of the enhancements, the frontier is dominated by the R (which is

safe) and S (which is not safe) options, indicating that they provide

the best bang-for-buck with respect to time and space trade-offs

for dynamic pruning algorithms. If speed is the primary objective,

then Q (also not safe) and P (safe) can be added as well.

6 DISCUSSION AND CONCLUSION
FlexibilityConsiderations. Dynamic pruning algorithms are typ-

ically tightly coupled with a particular similarity computation, since

the list- and block-bound informationmust be computed in advance.

If a different ranking calculation is required for some reason, the

index can still be used in RankedOR mode, simply ignoring the

bound information. Another option is to compute and storemultiple

list bounds (to supportWAND processing using a defined suite of

similarity computations) and one set of block bounds (the primary

similarity option, used for BMW or VBMW processing). A further

compromise is to store the maximal tf value for each postings list,

allowing (less precise) bounds to be computed on-the-fly [30, 31].

For example, flexible bounds are used in Lucene [21].
Similar heuristics could be extended to score threshold predic-

tion, which also relies on pre-computing score impacts offline. Index

quantization reduces flexibility; and while recent work has shown

that quantization can still be used with append-only collections

[40], any change to the ranking model requires totally re-scoring

and quantizing all postings. On the other hand, index reordering

is a one-time-only operation that is undertaken prior to indexing;

hence, given the gains that are available, it should be the first pri-

ority for any practitioner. Stopping also provides efficiency gains

without impacting flexibility, but needs to be applied judiciously.

Implementation Complexity. Programming effort is another di-

mension that has practical significance, and there are multiple

instances in our results of optimization to “simpler” processing

modes being viable alternatives to the more complex processing

modes. Hence, there may be pragmatic considerations that suggest

that RankedOR orWAND (relatively straightforward to implement)

should be preferred toBMW/VBMW (complex to implement) unless

there is a clear efficiency or resource bottleneck observed. Attention

must also be paid to the type of optimizations that are available. For

example, it may be wiser to spend some available space by shifting

from the PEF or OptPFD codecs to the SIMD-BP128 codec than it

is to apply the same (or more) space to quantization.

Conclusion. We posed five research questions in Section 1, with

one over-riding concern, expressed in the paper’s title: whether

efficiency improvements are additive.

As a result of this project, we are now able to provide answers.

Having combined a palette of four processing modes, four orthogo-

nal enhancements, and four compression codecs to create a smor-

gasbord of 256 systems, and then having run them over 5,000 queries

and two large document collections, we have arrived at a set of qual-

ified “yes” answers – that the efficiency improvements explored are

indeed broadly additive; that there is little volatility risk involved in

adding enhancements to existing systems; that query latency and

index space can be traded against each other in interesting ways;

and that there are other subjective trade-offs that should also be

taken into consideration when designing an implementation.

Acknowledgment. This work was supported by the Australian

Research Council Discovery Project DP200103136.

REFERENCES
[1] M. Akcay, I. S. Altingovde, C. Macdonald, and I. Ounis. On the additivity and

weak baselines for search result diversification research. In Proc. ICTIR, pages
109–116, 2017.

[2] J. Allan, B. Carterette, J. A. Aslam, V. Pavlu, B. Dachev, and E. Kanoulas. Million

query track 2007 overview. In Proc. TREC, 2007.
[3] J. Allan, J. A. Aslam, B. Carterette, V. Pavlu, and E. Kanoulas. Million query track

2008 overview. In Proc. TREC, 2008.

[4] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early

termination. In Proc. SIGIR, pages 35–42, 2001.
[5] T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. Improvements that don’t

add up: Ad-hoc retrieval results since 1998. In Proc. CIKM, pages 601–610, 2009.

[6] X. Bai, I. Arapakis, B. B. Cambazoglu, and A. Freire. Understanding and leveraging

the impact of response latency on user behaviour in web search. ACM Trans. Inf.
Sys., 36(2):1–42, 2017.

[7] R. Blanco and A. Barreiro. TSP and cluster-based solutions to the reassignment

of document identifiers. Inf. Retr., 9(4):499–517, 2006.
[8] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query

evaluation using a two-level retrieval process. In Proc. CIKM, pages 426–434,

2003.

[9] E. W. Brown. Fast evaluation of structured queries for information retrieval. In

Proc. SIGIR, pages 30–38, 1995.
[10] B. Carterette, V. Pavlu, H. Fang, and E. Kanoulas. Million query track 2009

overview. In Proc. TREC, 2009.
[11] C. L. A. Clarke, J. S. Culpepper, and A. Moffat. Assessing efficiency-effectiveness

tradeoffs in multi-stage retrieval systems without using relevance judgments.

Inf. Retr., 19(4):351–377, 2016.
[12] M. Crane, A. Trotman, and R. O’Keefe. Maintaining discriminatory power in

quantized indexes. In Proc. CIKM, pages 1221–1224, 2013.

[13] M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman. A comparison

of Document-at-a-Time and Score-at-a-Time query evaluation. In Proc. WSDM,

pages 201–210, 2017.

[14] M. F. Dacrema, P. Cremonesi, and D. Jannach. Are we really making much

progress? A worrying analysis of recent neural recommendation approaches. In

Proc. RecSys, pages 101–109, 2019.
[15] C. M. Daoud, E. S. de Moura, A. Carvalho, A. S. da Silva, D. Fernandes, and

C. Rossi. Fast top-𝑘 preserving query processing using two-tier indexes. Inf. Proc.
& Man., 52(5):855–872, 2016.

[16] C. M. Daoud, E. S. deMoura, D. Fernandes, A. S. da Silva, C. Rossi, and A. Carvalho.

Waves: A fast multi-tier top-𝑘 query processing algorithm. Inf. Retr., 20(3):292–
316, 2017.

[17] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita. Com-

pressing graphs and indexes with recursive graph bisection. In Proc. KDD, pages
1535–1544, 2016.

[18] S. Ding and T. Suel. Faster top-𝑘 document retrieval using block-max indexes.

In Proc. SIGIR, pages 993–1002, 2011.
[19] S. Ding, J. Attenberg, and T. Suel. Scalable techniques for document identifier

assignment in inverted indexes. In Proc. WWW, pages 311–320, 2010.

[20] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. Evaluation

strategies for top-𝑘 queries over memory-resident inverted indexes. Proc. VLDB,
4(12):1213–1224, 2011.

[21] A. Grand, R. Muir, J. Ferenczi, and J. Lin. From MaxScore to Block-Max Wand:

The story of how Lucene significantly improved query evaluation performance.

In Proc. ECIR, pages 20–27, 2020.
[22] S. Hofstätter and A. Hanbury. Let’s measure run time! Extending the IR replica-

bility infrastructure to include performance aspects. In Proc. OSIRRC at SIGIR
2019, pages 12–16, 2019.

[23] C. Kamphuis, A. P. de Vries, L. Boytsov, and J. Lin. Which BM25 do you mean? A

large-scale reproducibility study of scoring variants. In Proc. ECIR, pages 28–34,
2020.

[24] A. Kane and F. W. Tompa. Split-lists and initial thresholds for WAND-based

search. In Proc. SIGIR, pages 877–880, 2018.
[25] S. Kharazmi, F. Scholer, D. Vallet, and M. Sanderson. Examining additivity and

weak baselines. ACM Trans. Inf. Sys., 34(4), 2016.
[26] Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. Does selective search benefit

from WAND optimization? In Proc. ECIR, pages 145–158, 2016.
[27] D. Lemire and L. Boytsov. Decoding billions of integers per second through

vectorization. Soft. Prac. & Exp., 41(1):1–29, 2015.
[28] J. Lin and P. Yang. The impact of score ties on repeatability in document ranking.

In Proc. SIGIR, pages 1125–1128, 2019.
[29] J. Lin, M. Crane, A. Trotman, J. Callan, I. Chattopadhyaya, J. Foley, G. Ingersoll,

C. Macdonald, and S. Vigna. Toward reproducible baselines: The open-source IR

reproducibility challenge. In Proc. ECIR, pages 408–420, 2016.
[30] C. Macdonald and N. Tonellotto. Upper bound approximation for BlockMaxWand.

In Proc. ICTIR, pages 273–276, 2017.
[31] C. Macdonald, I. Ounis, and N. Tonellotto. Upper-bound approximations for

dynamic pruning. ACM Trans. Inf. Sys., 29(4):17.1–17.28, 2011.

[32] C. Macdonald, R. L. T. Santos, I. Ounis, and B. He. About learning models with

multiple query-dependent features. ACM Trans. Inf. Sys., 31(3):11.1–11.39, 2013.
[33] J. Mackenzie, A. Mallia, M. Petri, J. S. Culpepper, and T. Suel. Compressing

inverted indexes with recursive graph bisection: A reproducibility study. In Proc.
ECIR, pages 339–352, 2019.

[34] J. Mackenzie, Z. Dai, L. Gallagher, and J. Callan. Efficiency implications of term

weighting for passage retrieval. In Proc. SIGIR, pages 1821–1824, 2020.
[35] A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. Faster

BlockMax WAND with variable-sized blocks. In Proc. SIGIR, pages 625–634, 2017.
[36] A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel. PISA: Performant indexes

and search for academia. In Proc. OSIRRC at SIGIR 2019, pages 50–56, 2019.
[37] A. Mallia, M. Siedlaczek, and T. Suel. An experimental study of index compression

and DAAT query processing methods. In Proc. ECIR, pages 353–368, 2019.
[38] A. Mallia, M. Siedlaczek, M. Sun, and T. Suel. A comparison of top-𝑘 threshold

estimation techniques for disjunctive query processing. In Proc. CIKM, 2020. To

appear.

[39] A. Moffat and L. Stuiver. Binary interpolative coding for effective index compres-

sion. Inf. Retr., 3(1):25–47, 2000.
[40] S. Mohammed, M. Crane, and J. Lin. Quantization in append-only collections. In

Proc. ICTIR, pages 265–268, 2017.
[41] G. Ottaviano and R. Venturini. Partitioned Elias-Fano indexes. In Proc. SIGIR,

pages 273–282, 2014.

[42] M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic of WAND. In Proc.
Aust. Doc. Comp. Symp., pages 58–65, 2013.

[43] M. Petri, A. Moffat, J. Mackenzie, J. S. Culpepper, and D. Beck. Accelerated query

processing via similarity score prediction. In Proc. SIGIR, pages 485–494, 2019.
[44] G. E. Pibiri and R. Venturini. Techniques for inverted index compression, 2019.

arXiv:1908.10598.

[45] S. E. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25

and beyond. Found. Trnd. Inf. Retr., 3:333–389, 2009.
[46] E. Schurman and J. Brutlag. Performance related changes and their user impact.

Velocity, 2009.

[47] W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann, and C.-P. Chung. Inverted file compression

through document identifier reassignment. Inf. Proc. & Man., 39(1):117–131, 2003.
[48] F. Silvestri. Sorting out the document identifier assignment problem. In Proc.

ECIR, pages 101–112, 2007.
[49] F. Silvestri, S. Orlando, and R. Perego. Assigning identifiers to documents to

enhance the clustering property of fulltext indexes. In Proc. SIGIR, pages 305–312,
2004.

[50] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi. SIMD-based

decoding of posting lists. In Proc. CIKM, pages 317–326, 2011.

[51] T. Strohman, H. Turtle, and W. B. Croft. Optimization strategies for complex

queries. In Proc. SIGIR, pages 219–225, 2005.
[52] N. Tonellotto, C. Macdonald, and I. Ounis. Efficient query processing for scalable

web search. Found. Trnd. Inf. Retr., 12(4-5):319–500, 2018.
[53] A. Trotman, X.-F. Jia, and M. Crane. Towards an efficient and effective search

engine. In Proc. OSIR at SIGIR 2012, pages 40–47, 2012.
[54] A. Trotman, A. Puurula, and B. Burgess. Improvements to BM25 and language

models examined. In Proc. Aust. Doc. Comp. Symp., pages 58–65, 2014.
[55] H. R. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Inf.

Proc. & Man., 31(6):831–850, 1995.
[56] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked

retrieval. In Proc. SIGIR, pages 105–114, 2011.
[57] Q. Wang and T. Suel. Document reordering for faster intersection. Proc. VLDB,

12(5):475–487, 2019.

[58] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann, San Francisco, second

edition, 1999.

[59] E. Yafay and I. S. Altingovde. Caching scores for faster query processing with

dynamic pruning in search engines. In Proc. CIKM, pages 2457–2460, 2019.

[60] H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing

with optimized document ordering. In Proc. WWW, pages 401–410, 2009.

[61] W. Yang, K. Lu, P. Yang, and J. Lin. Critically examining the “neural hype”: Weak

baselines and the additivity of effectiveness gains from neural ranking models.

In Proc. SIGIR, pages 1129–1132, 2019.
[62] Z. Yang, A. Moffat, and A. Turpin. How precise does document scoring need to

be? In Proc. Asia Info. Retri. Soc. Conf., pages 279–291, 2016.
[63] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comp. Surv.,

38(2):6:1–6:56, 2006.

	Abstract
	1 Introduction
	2 Background
	2.1 Additivity, Efficiency, and Reproducibility
	2.2 Scalable Query Processing

	3 Efficiency Innovations
	3.1 Factor P: Predicting the Heap Threshold
	3.2 Factor Q: Index Quantization
	3.3 Factor R: Document Reordering
	3.4 Factor S: Stopping
	3.5 Modes, Enhancements, and Additivity

	4 Experiments
	4.1 Experimental Setup
	4.2 Space Consumption
	4.3 Query Processing Latency

	5 Understanding the Interactions
	5.1 Latency and Profiling
	5.2 Time Versus Space

	6 Discussion and Conclusion
	References

