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ABSTRACT
Index reordering techniques allow document collections to be renum-
bered, with the goal of developing a permutation of the initial docu-
ment ordinal identifiers that places documents that are (somehow)
like each other into positions near each other in the permuted or-
dering. The clustering that results allows inverted index size to be
reduced, since each term’s posting list is more likely to contain
a non-uniform set of inter-document integer gaps. Reordering is
normally performed once, at the time the index is created.

Here we consider the role of index reordering in collections that
grow over time, noting that simply appending new documents to
the collection may erode the effectiveness of an earlier reordering.
In particular, we discuss methods for maintaining and reinstating
reorderings as document collections grow, and measure the effec-
tiveness of those techniques on a large corpus of English news
articles. We also provide experimental results that illustrate the
benefits of reordering in terms of query execution time.
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1 INTRODUCTION
We consider the competing tensions that arise when the goal is
to minimize the size of the index associated with an information
retrieval system, but, at the same time, accommodate an ongoing
stream of documents that must be incorporated while the system is
operational and serving answers to queries. In particular, document
reordering techniques assume that the ordinal numbers attached
to the stored items can be permuted, to create an arrangement that
is more amenable to compression. Such techniques are readily ap-
plied when the collection is static and the ideal document sequence
can be computed prior to the deployment of the retrieval service.
But extensions to the collection might disrupt such arrangements,
and render them unhelpful; nor is it likely to be possible for new
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documents to be inserted in amongst the current document order-
ing, because effective index compression relies on the document
numbering being dense.

Our investigation in this paper considers methods for reconcil-
ing these two competing objectives – retaining the benefits of a
reordered index (less storage for the index, and faster query pro-
cessing) but allowing documents to be appended to the growing
collection. We note that Wang and Suel [23] explicitly mention
index maintenance as a possible confound for document reordering,
and so our work here can be seen as an investigation that at least
in part responds to their question.

Section 2 provides a general background to inverted indexing
and an overview of document reordering techniques, with a focus
on one particular recent method; and then describes the operational
cycle that we assume for extensible indexing. Sections 3 and 4 then
consider, respectively, the implications of document acquisition
and reordering on index size, and the effect that various possible
approaches have on query processing times.

2 BACKGROUND
Inverted Indexing and Compression. The inverted index is
widely used as a structure for supporting ranked “bag of words”
querying over collections of documents. Each term in the collection
has a postings list associated with it, containing the ordinal numbers
of the documents that contain one or more instances of that term.
Queries are evaluated by merging and/or intersecting the postings
lists of the terms that appear in the query. Zobel and Moffat [26]
provide an overview of these processes.

The postings list 𝐼𝑡 for some term 𝑡 in a collection of𝑁 documents
consists of a sequence of tuples ⟨𝑑𝑡,𝑖 , 𝑓𝑡,𝑖 ⟩, where 0 ≤ 𝑑𝑡,𝑖 < 𝑁 is
the ordinal number associated with the 𝑖 th document in which 𝑡

appears, and 𝑓𝑡,𝑖 is 𝑡 ’s occurrence frequency in document 𝑑𝑡,𝑖 . Each
term has a collection frequency 𝑓𝑡 associated with it; its posting list
is thus 𝐼𝑡 = [⟨𝑑𝑡,𝑖 , 𝑓𝑡,𝑖 ⟩ | 0 ≤ 𝑖 < 𝑓𝑡 ]. Note that the 𝑑𝑡,𝑖 values are
unique within each postings list, and that the tuples are normally
(in a document-sorted index) arranged in ascending 𝑑𝑡,𝑖 order. It is
then usual for “𝑑-gaps” to be formed, and for a sequence of tuples
⟨𝑑𝑡,𝑖 − 𝑑𝑡,𝑖−1, 𝑓𝑡,𝑖 ⟩ to be stored, with 𝑑𝑡,−1 ≡ −1 for all terms 𝑡 .
Again, see Zobel and Moffat [26] for more information. Finally,
those gaps are represented using a variable-length integer code
that assigns shorter codewords to smaller integers [21, 26]. Terms
that are frequent across the collection thus get shorter codewords on
average than terms that are rare, and the inverted index is reduced
in size compared to using the raw 𝑑𝑡,𝑖 values, and compared to
using a fixed-width binary code of ⌈log2 𝑁 ⌉ bits for the 𝑑𝑡,𝑖 values.

Document Reordering. Blandford and Blelloch [1] noted that fur-
ther space savings can be achieved via index reordering – permuting
the ordinal arrangement of the documents in the collection so that
the bit-cost of storing the gaps decreases. The space required for
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any given term is minimized if the 𝑑𝑡,𝑖 − 𝑑𝑡,𝑖−1 gaps are as non-
uniform as possible; for a single term, optimal rearrangement is
trivially achieved by assigning the documents containing that term
to the permuted range 0 to 𝑓𝑡 − 1, and the remaining documents to
the range 𝑓𝑡 to 𝑁 − 1. But over the whole collection, the situation
is more complex, since a global document reassignment is required
that is the same for all terms.

To tackle that obstacle, Dhulipala et al. [5] developed an ap-
proach based on bipartite graph partitioning. Their BP mechanism
splits the document number range into two halves, each of size
𝑁 /2, and then identifies pairs of documents, one in each half, that
if swapped will result in a net predicted reduction in index size. The
estimation process is based on the two documents’ terms’ frequen-
cies within the two halves. Swapping a pair of documents between
the halves alters those frequencies for all terms that occur in the
two documents, meaning that re-estimation must then occur too.
The estimation and swapping process iterates until either stability
(a fixed point) is achieved, or some maximum number of iterations
is reached. The process then recursively considers the first 𝑁 /2
documents, and then, separately, the second 𝑁 /2 documents, fur-
ther permuting the ordinal assignment within those two subranges,
but not allowing any more document transfers across the primary
𝑁 /2 boundary. The recursion ends when small ranges spanning
ten or twenty documents are reached.

Mackenzie et al. [12, 14] explore variants of the BP approach,
achieving consistent efficiency and compression improvements
across a variety of document collections. Similarly, Wang and Suel
[23] proposed a variant of the BP technique which improves the
efficiency of conjunctive query processing. Bipartite partitioning
has also been shown to accelerate query processing for disjunctive
dynamic pruning algorithms [11, 18].

Partitioned Collections. Large-scale search systems are usually
supported by a cluster of processors, each responsible for its share
of the overall collection. The partitioning of documents across ma-
chines is usually random, to achieve effective load-balancing and
efficient computation; with these attributes usually measured by
query latency (perhaps as a mean or median, or perhaps at some
high percentile as part of a service-level agreement or SLA [15]).
Each machine in the cluster must comply with the SLA if the cluster
as a whole is to be able to. To achieve that compliance, some mini-
mum number of processing nodes, denoted 𝑃 , must be employed.
Each query that arrives is processed in parallel on all 𝑃 machines,
with their answer sets joined and then (perhaps) perturbed by sub-
sequent detailed ranking phases. If fewer than 𝑃 processing nodes
are available, either it will not be possible to store all of the docu-
ments in the collection; or not possible to process queries quickly
enough; or both.

Now consider one of those 𝑃 machines and its allocated data
subset. At any given point in time that machine is operating at some
fraction of its available capacity, both in terms of disk space for
documents and index, and also in terms of processing power and
its ability to handle queries within the SLA. Moreover, from a cost-
effectiveness (that is, commercial competitiveness) point of view,
the goal is to handle the required data, and the current query load,
not only within the SLA, but using as few resources as possible.

Appended batches Available expansion

P = 2

P' = P + 1
P' = 3

P
P + 1

1
P + 1

P
P + 1

Ordered subcollections

1
P + 1

Figure 1: Restructuring after three batches of new documents
have been appended, here with 𝑃 = 2 and 𝑃 ′ = 3, just before a
thinning and reassignment step, and then just after. Both of the
initial partitions are thinned by approximately 33% to allow creation
of 𝑃 ′ = 3 equal-sized new partitions, ready for further expansion.
All three new partitions might then be fully reordered as part of
the restructuring.

Extensible Collections. The discussion so far has assumed a static
collection, and that an index is to be prepared for it as an off-line
task. In an extensible collection documents arrive throughout the
life of the index, and must be integrated into it as they arrive, so
that they become findable shortly after their acquisition.

Taking all these constraints into account, we consider a strategy
that involves repeated cycles of growth. In each cycle the starting
configuration is an arrangement in which the collection is randomly
partitioned across 𝑃 machines. We then consider what must happen
as the collection grows. In the short term, 1/𝑃 of any batch of new
documents can be assigned to each processor. But eventually one
or more additional machines needs to be assigned to the cluster,
because – as noted above – the assumption is that each machine
is near (but not beyond) its limit in terms of data storage ability
(for example, a memory-resident index is limited by the amount of
memory that is available), and near (but not yet breaching) its query
throughput SLA expectation. For this purpose “near” is defined as
“at or above 𝑧0 percent of capacity”, where 𝑧0 is (perhaps, in an
ideal situation) 75% or 80%. There will also be an upper bound
𝑧max (perhaps 95% or 98%) which, when reached in terms of either
storage or query load, triggers a restructure.

Figure 1 provides a schematic of this process. The main part
(shown in blue) of both of the 𝑃 = 2 initial partitions is a fully
reordered collection. Batches of documents are then added (three
batches are shown in red in the example), and both of the partitions
expand, absorbing an equal random share of the new documents.
Eventually the point is reached at which nomore growth is possible;
and additional resources must be added. At that point both of the
existing partitions shed approximately 33% of their documents in
order to establish a third partition. The new partition, or all three
partitions, might be reordered. Querying then restarts, with all of
the (now) 𝑃 ′ partitions having expansion capacity available (the
brown zones).

Restructuring. Hence, an extensible collection operates in cycles
that start with a freshly balanced assignment of the collection
across some number of machines 𝑃 , with 𝑃 chosen such that the
index storage 𝑧𝑠 at each machine satisfies 𝑧0 ≤ 𝑧𝑠 ≤ 𝑧max, and
simultaneously the system load 𝑧𝑞 satisfies 𝑧0 ≤ 𝑧𝑞 ≤ 𝑧max at each
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machine, with 𝑧0 ≤ 𝑧max (𝑃 − 1)/𝑃 as a further constraint. Data
growth is then handled by accumulating arriving documents into
a batch, with a tailored “stop press” index used to resolve queries
against the batch while it is building. Once either a batch of new
documents of suitable size has been accumulated, or some pre-
specified interval of time has passed, the batch is split randomly
across the 𝑃 machines, each of which must integrate its 1/𝑃 share
of those documents.

This batch-at-a-time growth phase continues until the trigger
point at which 𝑧𝑠 > 𝑧max or 𝑧𝑞 > 𝑧max is reached on one or more of
the machines making up the cluster. Indeed, with random allocation
it is likely that all of the machines in the cluster will approach
these limits at roughly the same time. When that moment arrives,
new hardware must be introduced, so that the collection can be
redistributed across 𝑃 ′ > 𝑃 machines.

In Figure 1, 𝑃 ′ = 3 is shown relative to 𝑃 = 2, but any value
of 𝑃 ′ > 𝑃 might be used. In particular, when 𝑃 is large and still
growing, too-frequent reorganizations will give rise to a high total
workload. More useful (as is also done when deploying realloc()
in memory for dynamic arrays) is for the new cluster size 𝑃 ′ to be
computed as 𝑃 ′ = ⌈𝐺 ·𝑚⌉ for some constant 𝐺 ≈ 𝑧max/𝑧0; that is,
as an integerized geometric sequence with a parameter chosen in
terms of the overall system utilization targets.

Given that context, each machine in the cluster follows a cycle
of activity that has five components.

Q[uerying]: It receives queries from the centralized control and
resolves them against its current local document collection and
index, returning top-𝑘 answer sets back to the control;

G[rowing]: From time to time it receives a batch of new documents,
and must incorporate them into its local index;

M[onitoring]: It monitors its local storage utilization 𝑧𝑠 and local
query load 𝑧𝑞 , and if either of them exceed 𝑧max, it reports that
fact to the centralized control;

T[hinning]: It will then receive back an instruction to “thin by
𝑡%”, a request that it select a random subset of 𝑡% of its current
documents, remove them from the local index, and inform the
centralized control of the culled set, so that they can be reassigned
to one of the 𝑃 ′ − 𝑃 new machines that will shortly be hosting
the collection; and

R[eorganizing]: It then undertakes any necessary localized reorga-
nization of its depleted local index, possibly including document
reordering, prior to resuming query processing.

The first of these five components (Q) is already the subject of a
great deal of experimentation; and the third step (M) is straightfor-
ward. It is the other three steps (G, T, and R) – and the interactions
between them – that are the subject of this paper.

Related Work. We are not the first to consider implementation is-
sues associated with extensible collections. For example, Busch et al.
[3] discuss the Twitter “Earlybird” search engine where real-time
ingestion and processing is very important. Mohammed et al. [20]
explore a different aspect of growing collections, examining how
the number of bits used when quantizing an index degrades quality
over time for append-only updates. Other work has considered
batched document updates [8], and a geometric scheme that cas-
cades updates into larger and larger units in escalating transitions

[9]. Büttcher and Clarke [4] also discuss sub-index merging. Moffat
et al. [19] consider the compression of the documents themselves
as a collection grows, exploring similar ideas of periodic complete
reconstruction. None of those previous authors consider the inter-
action between document renumbering and collection extension.

Datasets and Methodology. Finally, to end this section, we de-
scribe the resources used through Sections 3 and 4, which consider
how best to structure the index of an extensible collection; and then
the consequences of those structural options in terms of querying
throughput, including in cases where the query stream displays
temporal drift.

The CC-News-En collection contains approximately 43 million
English-language news documents taken from the Common Crawl,
see Mackenzie et al. [13] for further details. The documents span
the period August 2016 to March 2018, and each has its crawl date
associated with it. We are thus able to simulate the behavior of
a collection that grows by daily, weekly, or monthly batches of
documents. In most of our experiments we start with documents
acquired in the first half of the overall time period of the collection
(approximately 40% of the documents) and then trace the acquisition
of the other 60% of the collection, assuming them to arrive in date
order in ten batches each corresponding to approximately one
month of insertions, and each of a similar (but not equal) size. That
is, our experiments cover one complete operational cycle as the
collection more than doubles in size.

Index reordering is carried out with the open-source toolkit
provided by Mackenzie et al. [14].1

We also focus on the operation of one processing node. The
thinning operation can be simulated by removing a random 𝑡% of
its documents; and insertions are enacted by appending a batch
of documents. Measurement of a system as a whole, across multi-
ple processing nodes, can then be inferred from the fact that the
document assignment is random. Mackenzie et al. [15] describe
experiments that support this claim.

3 INDEX THINNING AND EXPANSION
This section describes implementation options that might be em-
ployed in an extensible collection, and shows how they affect the
compressibility and hence size of the resultant index. Section 4 then
considers issues to do with query latency, and the effect that col-
lection structure has on query throughput relative to a temporally-
varying query stream.

Reorganization After Thinning. The first experiment explores
the degree to which a newly-thinned collection remains compact.
Recall that the thinning operation (T) takes an existing index, re-
moves a random subset of 𝑡% of the documents, and then adjusts the
index accordingly, so that future querying operations will not result
in references to the removed documents. The thinned documents
are transferred to one of the 𝑃 ′ − 𝑃 newly added processing nodes,
and responsibility for them no longer sits with this one.

There are three strategies that might be employed at each node,
each of which might be attractive in a cost-effectiveness sense.
LG: In the “leave gaps” strategy the retained (that is, non-thinned)
documents keep their ordinal numbers within this partition, and

1https://github.com/mpetri/faster-graph-bisection
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the postings that referred to culled documents are removed from
the index in a simple sequential pass. For each such removed
posting the next subsequent posting’s𝑑-gap increases, to span past
the removed document identifier, but the index should get smaller,
although not by 𝑡%. Even when 𝑡 is very small, the majority of
the postings may need to be relocated, even if not recomputed
and recoded; and when 𝑡 ≈ 50% a majority of postings will need
to be recomputed and recoded prior to being rewritten. Note that
this option leaves the partition with a sparse document domain.
After the thinning operation it holds 𝑁 ′ < 𝑁 documents, where
𝑁 ′ ≈ (1−𝑡) ·𝑁 , but their labels still span close to the whole range
from 0 to 𝑁 − 1, and so the average 𝑑-gap of postings will have
increased.

PL: The second option is to “pack left” the document domain in
this partition, so that the post-thinning ordinal document space
spans 0 to 𝑁 ′ − 1. The benefit of doing this is that index compres-
sion effectiveness is more likely to be maintained. The retained
documents are in the same order as in the LG approach, and in the
same relative order as the initial configuration. The same number
of postings must be relocated as in the LG approach, but they will
also require recomputation and recoding as they are moved. A
complete renumbering of the documents is also required, which
may affect other data structures, for example, the mapping that
converts a document number to the address from which that
document can be retrieved, perhaps slightly adding to the cost.

RO: The third, and most expensive option, is to fully reorder the
thinned collection using bipartite partitioning. The reduced doc-
ument set is handed to the recursive partitioning process, and a
completely fresh document ordering received back. A new index
is then constructed based on that ordering.

To measure the implications of these three options, we took CC-
News-En, and constructed a BP-ordered index for those documents,
with the goal of exploring the extent to which compression might
be eroded by the three approaches to reorganization once thinning
had taken place. The results appear in Table 1. The three columns in
each of the three groups correspond, respectively, to a surrogate for
compressibility, defined for postings list 𝐼𝑡 as

∑
0≤𝑖<𝑓𝑡 log2 (𝑑𝑡,𝑖 −

𝑑𝑡,𝑖−1), then summed over all postings lists and divided by the total
number of postings (loggap, with units of bits per posting 𝑑-gap);
the measured average size of the compressed 𝑑-gaps using binary
interpolative coding (bpp, compressed bits per posting 𝑑-gap); and
the actual index size in GiB. The latter includes the 𝑓𝑡,𝑖 values as
well as the 𝑑-gaps, and also a number of other small overheads,
such as alignment bytes.

As anticipated, the LG strategy is demonstrably worse for all
non-trivial values of 𝑡 . More interesting in the table is that the PL
and RO approaches provide comparable effectiveness right across
the range of thinning ratios 𝑡 . Applying the full BP process to a
50% randomly thinned collection yields the same net outcome as
does retaining the non-thinned documents in their initial ordering.
Indeed, if anything, PL has a slight advantage.

Finally, note that in this experiment it was assumed that the col-
lection that was thinned was a fully BP-ordered one. In the context
sketched in Figure 1, this is not appropriate – in the schematic, the
collections being thinned are composite, consisting of a main part

that has been properly reordered, and then smaller batches that
have been appended. That difference is examined next.

Index Expansion and Regrowth. The complement operation is
that of growing the index – adding multiple batches of documents
in such a way that the index is queryable after each such addition,
and retains its structure and “efficiency” characteristics while those
additions are taking place. For example, the initial configuration
depicted in Figure 1 supposes that three batches of fresh documents
have been added to the (blue) partitions that resulted from the
previous thinning step.

Given that context, the methodology employed to compare dif-
ferent approaches is summarized as:

• the chronologically first 40% of CC-News-En is taken to be a
starting point, and an ordered index built for it;

• the remaining documents are also ordered chronologically, and
broken into ten batches each of approximately 6% of the CC-
News-En collection, and with approximately one month of new
documents in each of those ten batches;

• each batch is appended in some form to the current index, and
statistics computed.

We then considered four possible approaches to incorporating each
batch into the growing index.

SA: In the “simple append” approach the documents in the batch
are retained in the order they were acquired, that is, chronological
by date.

BR: In the “batch reordering” mechanism the documents in the
batch are reordered based only on information provided in the
batch, and then appended to the original index. Two variants of
this approach were considered: one where the ordering applied to
the batch was based on source page URL; and a second in which
bipartite partitioning was applied to the batch.

GR: The third approach is “global reordering”, in which the batch
and the previous index are combined, and then completely re-
ordered via an application of bipartite partitioning.

The GR approach provides the reference point for index space,
since the final document ordering is independent of arrival order.

Note also that there was no particular operational reason for
taking batches to be one month, and we could instead have used
one week, one day, or one hour. However using one month or one
week per batch yields measurements that are less likely to exhibit
local volatility, making the overall trends easier to discern.

Figure 2 uses the methodology described above to compare the
four strategies. The three graph panes show the effect of growth
strategy on three different aspects of the per-posting cost of storing
the index, as described in the figure caption. Horizontal lines indi-
cate strict linear growth in size relative to the starting point, and
increasing lines reflect super-linear index cost growth. Fully reorga-
nizing the index (the RO approach) after each batch arrives yields
the most stable compression performance, and as noted above, rep-
resents the ideal situation. But – as is demonstrated in the next set
of results – it also incurs significant computational cost.

Total Cycle Cost. Table 2 summarizes the difference between the
BR and GR approaches to reordering. In the table’s first section,
a full reordering of 40% of CC-News-En is assumed, immediately
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Table 1: Reorganization options applied to CC-News-En. The first row provides a reference point, and corresponds to a BP-ordered index for
CC-News-En. The remaining rows demonstrate the outcome on index size and compression when thinning by 𝑡%. The “loggaps” (sum of the
binary logarithms of the 𝑑-gaps) and bits per posting values are computed on the document identifiers only; in the third column in each
group, index size in GiB covers all index components, including within-document frequencies and a number of overhead components. The
integer 𝑑-gap lists and 𝑓𝑡,𝑖 frequency values are compressed using binary interpolative coding in all cases.

𝑡
LG strategy PL strategy RO strategy

loggap bpp GiB loggap bpp GiB loggap bpp GiB

0 1.28 2.96 10.06 1.28 2.96 10.06 1.28 2.96 10.06
1 1.29 3.00 10.06 1.28 2.96 9.97 1.28 2.96 9.96
2 1.30 3.05 10.06 1.28 2.96 9.87 1.28 2.96 9.86
5 1.34 3.16 9.99 1.29 2.97 9.59 1.29 2.97 9.58
10 1.41 3.34 9.82 1.29 2.98 9.11 1.29 2.98 9.11
20 1.55 3.67 9.32 1.31 3.01 8.15 1.32 3.02 8.18
50 2.16 4.74 7.03 1.37 3.12 5.24 1.40 3.15 5.28
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Figure 2: Compression effectiveness drift, measured as ten batches are added to an index for the first 40% of the documents in CC-News-En.
As for Table 1, three measurements are provided: average loggap values in bits per 𝑑-gap across all terms (left); actual cost of storing the
average 𝑑-gap using the binary interpolative code (center); and the complete cost of the index including the 𝑓𝑡,𝑖 values, here reported as
average bits per posting (right). All three graphs show the total index cost through to that point as ten batches of documents are appended
and incorporated using different strategies. For example, the values at 5 on the horizontal axis correspond to approximately 70% of the
CC-News-En collection. Note that the vertical scales in the three panes are truncated to fit the corresponding data ranges.

after a thinning operation. Ten batches of updates are then pro-
cessed, each of roughly the same size, each which is reordered
independently and then appended to the existing index. The arrival
of any of those batches might trigger the next cycle of thinning,
but in this experiment we assume that does not occur. (Or it might
be the upcoming eleventh batch that triggers thinning.) On aver-
age, each batch reordering requires 120.5 elapsed seconds on our
test hardware (see Section 4 for a detailed description); yielding
a combined total index reordering time of 2222 seconds. If URL
ordering is used in conjunction with BR the time is halved: sort-
ing a list of URLs takes negligible time, and only the 1017-second
immediate-post-thinning reordering is required.

In contrast, if the GR approach is used, eleven complete reorder-
ings are required, spanning (approximately) 40%, 46%, 52%, and so
on, through to 94% and then 100% of the collection. As with the BR
method, it is assumed that none of the ten batches triggers the next

thinning cycle. The eleven full reorderings range from 1107 seconds
(for 40% of the eventual collection) through to 3186 seconds (for the
full 100% collection), and sum to the total shown in Table 2. That
is, GR incurs a significant overhead compared to BR, an overhead
that would be even higher if the batches were weekly or daily.

Note that in all of these calculations we are counting the cost of
computing the reordering, but not the cost of carrying it out. While
the cost of mechanically renumbering the documents remains con-
sistent between strategies, the resultant distributions may impact
the efficiency of compressing the postings lists – better orderings
are likely to result in faster index construction. We leave a more
thorough investigation to future work.

Summary. Our conclusion from these experiments is that effective
index compression can be readily maintained in the face of repeated
cycles of thinning and then batched growth using relatively straight-
forward strategies, and need not require regular expensive “full
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Table 2: Time spent computing reorderings, comparing BR and
GR and measuring elapsed CPU time for a multi-threaded imple-
mentation of bipartite partitioning. The calculation covers one full
thinning-expansion cycle: starting with a newly thinned index, a
bipartite reordering is performed; and then ten one-month docu-
ment batches are added, taking the system through to the moment
at which the next thinning cycle would start.

Processing mode employed Time (sec)

BR operation (using BP):
– reordering following straight after thinning 1017
– average cost per batch reorder 121
total time over whole cycle 2222

GR operation:
– total time over sequence of ten full reorderings 22,557

reordering” steps. That is, the batches can be treated independently,
with full reordering only necessary at the processing nodes that
are added at each thinning/redistribution step.

Moreover, the two BR options – batch reordering by document
URL, and batch reordering via the application of bipartite partition-
ing within that batch – are much less computationally demanding
than the GR approach, and yet are still capable of maintaining very
good compression effectiveness in the index.

4 QUERY PROCESSING
This section switches focus, and explores a second important aspect
of overall cost – query processing time. To measure query process-
ing efficiency, we employ the CC-News-En queries and consider
two representative processing tasks:

• Ranked conjunctive processing, in which the set of documents
that contain every query term is identified, and then ordered by
decreasing score computed by the BM25 similarity computation
across all terms, with the top 𝑘 = 10 documents identified and
reported (method “Ranked AND”); and

• Ranked disjunctive processing, in which the set of documents
that contain any of the query terms is identified and then or-
dered by decreasing BM25 score computed across the terms
common to query and document, using the MaxScore pruning
approach [22], with 𝑘 = 10 documents again returned as the
final answer (method “MaxScore”).

All experiments were performed entirely in-memory on a Linux
machine with two 3.50 GHz Intel Xeon Gold 6144 CPUs and 512 GiB
of RAM, with query timings measured as the mean elapsed latency
over three independent runs. Document collections were indexed
using the Anserini [25] system with Porter stemming and stopping
enabled. Those indexes were then converted to the PISA [17] format
using the common index file format [10]. Postings lists were com-
pressed using SIMD-BP128 [7]. All query timings were measured in
the context of the PISA search system. Note that bipartite partition-
ing allows a high degree of parallelism, and that the implementation
employed to obtain the results in Table 2 makes use of up to 32
processing threads. That is why we reported elapsed computation
times there, rather than CPU-only times. The temporally relevant

Table 3: Query processing cost in milliseconds per query, com-
puting the top-ranked 𝑘 = 10 answers for each query, using the
CC-News-En collection with various orderings. The base collec-
tion used in the first row has 17,167,810 documents; after all ten
document batches have been added to it that count increases to
43,495,426 documents, or 2.5× bigger (the other four rows).

Method Ranked AND MaxScore

Mean Median 𝑃99 Mean Median 𝑃99

Base index 5.8 2.2 57.4 12.0 7.9 60.9

SA 20.9 7.5 197.1 39.3 33.4 159.2
BR [URL] 15.0 5.3 151.5 31.1 20.7 149.6
BR [BP] 14.0 4.9 145.4 31.0 20.0 151.5
GR 13.4 4.8 139.2 28.0 17.9 142.0

CC-News-En query log was used in our experimentation, contain-
ing 10,437 user query variations corresponding to 173 unique topics.
Each topic relates directly to a single target document, allowing the
log to be split into temporal batches; each month has around 500
queries corresponding to an average of nine topics.

Query Processing Latency. Table 3 shows measured per-query
execution costs, listing the average, the median, and the 99 th per-
centile time, for two query processing modalities, and for collec-
tions of two different sizes. The first row gives times for the first
40% of CC-News-En, and serves as a reference point. The four
remaining rows then give querying times for the four different
batch-appending strategies, in all four cases for the full CC-News-
En collection when constructed by adding ten batches of documents
to the initial 40% collection; that is, by, in effect, more than doubling
the initial collection via ten monthly updates.

As can be seen from the table, query processing time more than
doubles as the collection doubles, lending credence to the earlier
statement that both storage space and query load need to be moni-
tored at each processor. Of the four growth strategies, SA is again a
poor choice (in part simply because its index is bigger, see Figure 2),
and GR is still the most economical choice, but with the two BR
options both close behind. In these results all of the CC-News-En
queries are executed against both the 40% and the full-collections.

Figure 3 shows the growth in query processing time as update
batches are added to the base collection. In this figure the queries
are also stratified, with time-based subsets of the query log formed.
For example, at month “5”, the queries used to measure the corre-
sponding retrieval times were the subset that corresponded to that
fifth update batch. (See Mackenzie et al. [13] for details of how the
topics and the queries were developed.) The relatively small number
of different topics available for each temporal update period is why
a degree of volatility is evident. Even so, the curves confirm the
overall results shown in Table 3. Similar relative behavior was also
observed when the top 𝑘 = 1000 documents were retrieved.

Temporal Topic Effects. The heatmap in Figure 4 explores the
relationship between queries and update batches more closely. Each
query segment was executed against the collection at the matching
stage of its growth, as already described in connection with Figure 2,
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Figure 4: Fraction of top-1000 answer rankings occupied by docu-
ments of different batches, bucketed by their crawl date, and strati-
fied across the corresponding batches of the temporal query log.

and the top 𝑘 = 1000 documents for each query were identified.
Those answer documents were then mapped back to their temporal
positions in the development of the index, with the initial 40%-CC-
News-En index also split into monthly acquisition batches. The
total number of answers accruing from each index batch was then
normalized against the document count for that batch, and plotted
as an intensity level. The interesting aspect of this figure is the clear
recency effect down the diagonal – queries tend to select documents

from the corresponding time period. Note that the BM25 scoring
regime used has no bias in favor of recency, and this pattern has
arisen organically from the data.

We examined in detail the apparent anomaly that appears in
month “13”. The extra attention on the articles from the first batch –
a little over a year prior to the documents out of which the queries
were derived – was a result of the queries associated with two of the
topics. One topic was related to a bombing in Yemen, the other to
the price of EpiPens; both arose as “topics” associatedwithmonth 13
because in that month there were followup articles connected to the
original clusters. Conversely, the strong correspondence between
batch and month “17” is because of a dominance of timely events
being queried by the topics used as seeds for the query solicitation
process, one of which was an interview of Barack Obama on BBC
radio hosted by Prince Harry, and another being the death of Rose
Marie (an actor who featured in The Dick Van Dyke Show, popular
on TV in the 1960s).

In future work we plan to explore this temporal locality and the
effect it may have on query processing times. For example, it may be
beneficial to process the most recently added index batch first, as a
component of a non-sequential query processing regime of the type
proposed by Mackenzie et al. [15]. West [24] has also considered
temporal trends in query sequences, and trends.google.com allows
these effects to be explored.

5 CONCLUSION
We have identified and examined a number of issues in connec-
tion with extensible retrieval systems, ones in which batches of
documents are appended from time to time. We have described the
operations that are required, and considered options applicable to
each. The most compact indexes, and the fastest retrieval opera-
tions, arise if every batch of new documents is fully integrated into
the previous index via a global reorganization step (GR), including
a complete document reordering via the bipartite partitioning mech-
anism. But this option is computationally expensive; the cheaper
BR batch-reordering options provide compression effectiveness
that is almost as good, and support querying times that are only a
little slower over the cycle of growth.

Having established this framework for describing extensible
collections, we have a number of areas that we will examine next.
Primary amongst these is to provide a better accounting of the
relative expense of repeated full bipartite partitioning steps (for
example, monthly, or weekly, or daily) compared to the CPU savings
that accrue during querying, to establish balance points between
document arrival rates and query arrival rates, using a “total cost
of operation” model that converts hardware costs into monetary
amounts for the purposes of comparison. We also plan to explore
enhanced queryingmodalities that focus the initial evaluation effort
on update batches that are likely to be temporally matched to
the query, to accelerate the dynamic pruning algorithms that are
integral to theMaxScore [22] andWAND-based approaches [2, 6,
16] to disjunctive query evaluation.
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