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Abstract. Large scale web search engines provide sub-second response
times to interactive user queries. However, not all search traffic arises in-
teractively – cache updates, internal testing and prototyping, generation
of training data, and web mining tasks all contribute to the workload of
a typical search service. If these non-interactive query components are
collected together and processed as a batch, the overall execution cost
of query processing can be significantly reduced. In this reproducibility
study, we revisit query batching in the context of large-scale conjunc-
tive processing over inverted indexes, considering both on-disk and in-
memory index arrangements. Our exploration first verifies the results
reported in the reference work [Ding et al., WSDM 2011], and then pro-
vides novel approaches for batch processing which give rise to better
time–space trade-offs than have been previously achieved.
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1 Introduction

Batch processing is a general paradigm aimed at reducing computational costs
by avoiding repeated or redundant computation when processing a sequence
of related tasks. This idea has been explored in a range of contexts, includ-
ing in relational database management systems [32], spatial-textual databases
[10], caching arrangements [1, 18], and within information retrieval indexing and
querying systems [4, 7, 16, 29]. Given the immense scale of commercial IR and
web search systems, revisiting batch processing may be one way to achieve re-
ductions in computational overhead, and consequently, energy consumption and
carbon emissions [11, 31, 33].

In this work, we revisit the problem of batch processing over inverted indexes.
Given a set of queries Q, the goal is to process each of those queries minimizing
the total cost according to some metric such as time taken or volume of data
read. That is done by building a query execution plan for Q that involves tech-
niques such as query reordering and partial preliminary computation of shared
results into a temporary cache, so as to reduce the overall cost. In this environ-
ment individual query latency is unimportant, and it is the aggregate cost that
is of interest. Batch processing over inverted indexes is motivated by a range
of scenarios in which query traffic is not required to be processed under strin-
gent service-level agreements [19], including refreshing caches [6, 17, 20, 22, 24],



2 Joel Mackenzie and Alistair Moffat

internal mining and analytics tasks, collecting training data, and queries from
external parties.

Despite the many possible applications of batch processing in information
retrieval systems, there has been only limited experimental investigation and
algorithmic development. The primary resource in this regard is the 2011 work
of Ding et al. [16], who took the queries in Q to be sets of terms handled via
Boolean conjunctions. It is reproduction of their work that forms the basis of
the first experiments described here. In particular, we confirm that strategic pre-
filling of a given volume of cache with postings lists results in overall savings of
data transfer volumes; or, if the same amount of cache holds pre-computed list
intersections, allows execution time reductions.

We then develop a new technique for the same task. Instead of selecting
content with which to fill a static cache, we reorder the queries, paying careful
attention to common subexpressions that can be evaluated once, at the time
they are required, reused through multiple queries, and then discarded. The
signal benefit of this approach is that only one intermediate list is required
at any given time. With careful choice of intermediate results and a new cost
estimation heuristic, we are able to outperform the Ding et al. [16] approaches
using only a fraction of the cache that their methods require.

2 Background and Related Work

We first describe the problem that is considered, and then the techniques for
addressing that problem that have been reported in the paper that is the basis
for this reprodicibility study [16].

Definitions and Terminology. We suppose thatQ contains n distinct queries,
Q = {Qi | 1 ≤ i ≤ n}, which must each be resolved against a document
collection D. Each of those queries consists of a set of qi = |Qi| distinct terms;
lower-case alphabetic letters a, b, and so on from the beginning of the alphabet
will be used to represent specific individual terms. The vocabulary V of Q is
the complete set of all of Q’s query terms, V = ∪n

i=1Qi. Each term a ∈ V has
an associated collection frequency fa ≥ 0, the number of documents in D that
contain a, which also represents the length of the postings list L(a) for a that
records the identifiers in D of those fa documents. The subset of queries that
contain a ∈ V is denoted by T (a) = {Qi ∈ Q | a ∈ Qi}. That latter definition is
also extended to term pairs: if a, b ∈ V , then T (a, b) is the subset of Q in which
both a and b occur as query terms.

If L(a) and L(b) are the postings lists for terms a, b ∈ V with fa ≤ fb then
their intersection list L(a, b) can be computed using ω(fa, fb) steps of computa-
tion and in O(ω(fa, fb)) time, where ω(x, y) = x log2(1 + y/x). Algorithms for
intersecting lists within these bounds are explored elsewhere [14]. Denote the
minimum collection frequency of query Qi by µi = min{fa | a ∈ Qi}. Then if
Qi = {a, b, c, . . .} is interpreted as a conjunctive Boolean bag of words query the
output required is the set of at most µi postings that result when all of Qi’s
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terms are intersected, L(Qi) = L(a) ∩ L(b) ∩ L(c) · · ·. When we give example
queries we will always list terms in increasing collection frequency. For example,
in Qi = {a, b, c}, we assume µi = fa ≤ fb ≤ fc.

In the set-versus-set approach to multi-way intersection the shortest list – of
length µi – is used as a starting point, and then each other list is in turn inter-
sected against that reducing set of candidates. If C0(Qi) is the cost of evaluating
the conjunctive query Qi starting from the terms’ individual postings lists, then
C0(Qi) ≤

∑
a∈Qi

ω(µi, fa). Hence, if C(Q) is the total cost of evaluating all of
the queries in Q, with no shared processing between queries and each query
evaluated in isolation, then C(Q) ≤

∑
1≤i≤n C0(Qi).

In addition to that computational cost there is also the cost of bringing
the required lists from secondary storage into memory. A query Qi of qi terms
requires that qi transfer operations be initiated (seeks), and that a total of
D0(Q) =

∑
a∈Qi

fa postings be transferred. Note that these transfer costs might
also apply, albeit to a lesser degree, when a fully in-memory index is employed,
with typical hardware configurations having multiple levels of memory.

Ding et al. [16] sought to explore the data transfer and computational cost
benefits achievable via the complementary techniques of list caching and inter-
section caching , focusing on the context that has been described here – a set Q
of queries which can be handled holistically rather than individually. Our goal
in this work is to reproduce those results, and then to also extend them.

List Caching. Assume first that the system’s inverted index is stored on disk,
but that a known amount of main memory is available to temporarily retain
selected postings lists so that they are available to future queries without seek
or transfer operations being required. In the case of interactive querying, various
strategies have been developed for estimating how best to employ the available
memory. These are embodied as decision protocols as to whether or not a newly
transferred postings should be retained; and if the decision is to retain, what
list(s) to eject from the current cache so as to make space for this new entry.

In the case of non-interactive query batches it is possible to greatly assist
list caching, because the queries in the batch can be evaluated in any order, and
because the decision protocols can be based on clairvoyant knowledge [3]. For
example, if a term appears only once in Q, it should not be cached.

Query Orderings. One way in which a query set might be reordered is to
first sort the terms of each query (for example, alphabetically by query term)
and then sort the set of queries lexicographically [16]. This approach brings
all queries with the same lexicographically least term into a consecutive group,
meaning that an effective caching strategy – including the clairvoyant approach
– will recognize that list and thus result in seek and transfer savings.

Ding et al. [16] also consider a second clustering approach to query ordering,
noting the proposal of Cheng et al. [9], who study the problem of document
identifier reordering for inverted indexes. In particular, Cheng et al. propose a
partition-based reordering method which recursively clusters an inverted index
by considering postings lists in decreasing order of their total size. Translating
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Fig. 1: Recursive Gray code-based query reordering. In this simple example terms
a, b, c are ordered |T (a)| ≥ |T (b)| ≥ |T (c)| · · ·, and T (ā) represents the absence
of term a, that is, T (ā) = Q \ T (a).

this to the set Q, we first identify the queries in which each term a ∈ V occurs,
to establish the set T (a). Then, considering those sets in decreasing size order, Q
is recursively partitioned so that all of the queries (within each current partition
of Q) containing the next most queried term are contiguous. Each cluster is
reversed relative to the previous level of the recursion, so that the cluster labels
form a Gray code. Figure 1 illustrates this approach, denoted here as Partitioned.

Intersection Caching. While list caching techniques have the potential to
reduce the amount of data transferred from secondary storage, they do not alter
the computation required during intersection operations. Suppose now that some
pair of terms a, b ∈ V has had their joint list pre-computed, and that a query
Qi ∈ T (a, b) is to be resolved, with fa ≤ fb, and hence |L(a, b)| ≤ |L(a)| ≤ |L(b)|.
Rather than using L(a) and L(b) in the intersection pipeline, this query should be
resolved using the list L(a, b). If Ca,b(Qi) is the computational cost of doing so,
then Ca,b(Qi) ≤ C0(Qi)−ω(µi, fb), with the intersection using L(a, b) requiring
at most the same time as the original intersection using L(a), but likely less
given the avoidance of list decompression operations.

Recall that T (a, b) is the subset of queries in Q that contain both term a and
term b. An estimate of the net saving that might be achieved by precomputing
L(a, b) is thus given by

∑
Qi∈T (a,b) ω(µi, fb), a benefit which must be debited by

ω(fa, fb), the cost of carrying out the pre-computation. Moreover, the list L(a, b)
must be stored, and will require as many as |L(a, b)| ≤ fa words of memory, or
a fractional equivalent if stored in compressed form.

Term Pair Popularity. This then leads to a first approach to term pair
caching: all co-occurring term pairs are tabulated to form the sets T (a, b); the
quantity G(a, b) = −ω(fa, fb) +

∑
Qi∈T (a,b) ω(µi, fb) is computed for each pos-

sible pair a, b, to compute the maximum gain possible by precomputing that
pair, and then those values are sorted into decreasing order, to create a static
popularity-based ordering of term pairs. Then, assuming that a specified amount
of cache is available, pairs a, b are taken from that ordered list and given cache
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Algorithm 1 Dynamic bang per byte query planning.

for each pair a, b ∈ V do
2: construct the list T (a, b) and compute B4B(a, b)

add a, b to a priority queue PQ of pending term pairs

4: while |PQ | > 0 and the cache limit has not been reached do
select a, b from PQ , maximizing B4B(a, b), and exiting if B4B(a, b) ≤ 0

6: allocate fa units of cache to the pair a, b
for each query Qj ∈ T (a, b) do

8: for each term c ∈ Qj , with c ̸= a, b do
adjust B4B(a, c) (or B4B(c, a), if fc < fa) to remove Qj ’s contribution

10: adjust B4B(b, c) (or B4B(c, b), if fc < fb) to remove Qj ’s contribution

remove a, b from PQ

allocations, iterating until the given cache limit has been reached. Term pairs
for which G(a, b) ≤ 0 should never be added to the cache.

The query processing plan fetches the postings lists for each of the selected
pairs and intersects them to populate the cache; and then processes Q in any
order, checking each Qi for the appearance of any pairs a, b for which L(a, b)
is in the cache, and using pre-computed lists whenever possible. The cache of
intersected lists remains constant through that execution sequence.

Static Bang Per Byte. A drawback of the simple popularity-based approach
is that high-frequency pairs and low-frequency pairs might have the same value
for G(·, ·), but a high-frequency pair will consume more cache and thus represent
less net value. A second option is thus to normalize the projected gain according
to the anticipated storage cost for the intersected list. That is, the list of term
pairs is considered instead in decreasing order of B4B(a, b) = G(a, b)/fa.

Dynamic Bang Per Byte. A further refinement is to note that a query Qi

might contain multiple pairs that received high B4B(a, b) values, but that in-
teractions between term pairs means that their independent gains cannot all be
achieved. For example, if Qi = {a, b, c} and pairs a, c and b, c are both in the
cache, then only one gain of ω(µi, fc) can result, making the other illusory. That
consideration leads to the mechanism described in Algorithm 1, which is our
interpretation of what is described in Section 4.2 (page 142, right column) of
Ding et al. [16]. A priority queue PQ of pairs not yet placed in the cache is em-
ployed, with priorities given by evolving B4B(a, b) values. The weights of pairs
are non-increasing, meaning that a “lazy” queue can be employed (rather than
an “always up to date” heap), and recomputations of B4B(c, d) deferred until
c, d reaches the head of PQ . A flag bit associated with each pair c, d is sufficient
to record whether the current B4B(c, d) value is valid or requires recomputation
(and possible deferral) should it reach the head of PQ .

This mechanism employs the same query processing plan as the previous two,
but should result in a more economical combination of lists L(a, b) in the cache.
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On the other hand, the computation described in Algorithm 1 is more complex
than is calculation of static B4B(·, ·) values.

More Than Just Pairs. The ideas presented above are not limited to term
pairs, and intersecting further terms (such as triples or quads) may also lead to
improvements. However, Ding et al. [16] found that, due to the power-law distri-
bution of query terms [30], selected pairs were also often overlapping with promis-
ing triples and quads, meaning that the pairs provide most of the overall ben-
efit. Furthermore, increasing the number of candidates increases pre-processing
costs. In this work, we only consider term pairs, noting that our batch processing
framework can be extended to triples and beyond if required.

Other Related Work. Chaudhuri et al. [8] examined how materializing list in-
tersections can reduce querying based on the power-law characteristics of corpus
terms. Tolosa et al. [34] have also examined the benefits of caching intersections
for in-memory processing scenarios, comparing a number of cache admission
strategies. The broad problem of efficiently handling queries over large volumes
of data has challenged researchers and practitioners for decades, with ongoing
research; see Tonellotto et al. [35] for an overview.

3 Experimental Setup

Hardware and Measurement. Our experiments are conducted on a Linux
server with two Intel Xeon Gold 6144 CPUs at 3.5GHz with 512GiB of RAM.
Only a single processing core is utilized, allowing the use of processing latency
as a proxy for total computing cost. The list caching experiments in Section 4
measure the volume of compressed postings lists needing to be transferred from
secondary storage. Then the intersection caching experiments in Section 5 load
the whole index into main memory prior to commencement of the query process-
ing plan, and are reported as query batch execution times in elapsed seconds.

Software. One setback in reproducing the reference work is that the previous
source code and experimental framework are not available. Thus, we reimple-
mented the algorithms based on the descriptions provided by Ding et al. [16].
All caching and query planning algorithms were implemented in C++ and com-
piled with GCC 7.5.0 using -O3 optimization. Our retrieval experiments make
use of a version of the efficient PISA search system [28], modified to allow the
results of intersections to be stored and used during query processing. Document
indexes are built using the Lucene-based Anserini system [36] and are converted
to SIMD-BP128 [21] compressed PISA indexes via the common index file format
[23]. Indexes are reordered using the recursive partitioning mechanism [15, 27].

Document Collections. Two public collections are used: MSMARCO-v1 and
MSMARCO-v2 contain 8.8 million and 138.4 million passages respectively, drawn
from English web documents [2, 13]. The augmented version of MSMARCO-v2 is
adopted, in which passages are expanded with the document URL, title, and
headings [25]. Table 1 provides statistics of the collections after indexing.
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Table 1: Index statistics for the two test collections used here, and (last row)
the collection employed in the reference work by Ding et al. [16], which is not
publicly available.

Collection Documents Unique terms Postings Size [GiB]

MSMARCO-v1 8,841,823 2,660,824 266,247,718 0.9
MSMARCO-v2 138,364,198 16,579,071 8,629,430,400 22.8

RandomWeb [16] 10,000,000 – – 4.2

Query Batch. Ding et al. [16] used a total of 1.16 million distinct queries from
the Excite query log in their experiments. However, these queries are not likely to
be temporally relevant to the MSMARCO passages used in our experimentation.
Instead, we use the entire set of 10 million ORCAS queries [12]. These queries were
filtered by first applying a normalization process: stemming, case-folding, and
stopword removal according to the default Lucene tokenizer. All within-query
duplicate terms were then removed, since we only focus on conjunctive matching.
Finally, only unique queries which did not contain out-of-vocabulary terms on
bothMSMARCO-v1 andMSMARCO-v2 were collected into the final batch, resulting
in a total of 6,761,892 queries with an average length of 3.2 unique terms.

4 Reducing Data Transfer Volume Via List Caching

The first experiment examines the gains possible as a result of in-advance knowl-
edge of the query batch, assuming that the index resides on some form of sec-
ondary storage. In this context, data transfer time is an important factor in
overall query processing time, and the aim is reduce it via list caching. Ding
et al. [16] consider two factors for doing that: the order in which the queries
should be processed; and the cache eviction strategy.

Query Ordering. As discussed in Section 2, the order in which queries are
processed can improve term locality. Here, we evaluate three strategies:

– Random: A baseline measurement undertaken using a randomly shuffled log.
(Ding et al. [16] started with the natural ordering of their query log, but we
have no notion of a natural order here.)

– Sorted: Sorts the queries lexicographically, as described in Section 2.
– Partitioned: Employs the Gray code-based query reordering shown in Figure 1.

We believe that this corresponds to the “agglomerative clustering” of Ding
et al. [16] which is based on the work of Cheng et al. [9, Figure 7].

Ding et al. [16] comment that other clustering methods are possible. To ex-
plore that option we also implemented an approximate traveling salesman-based
method [9, Figure 4] denoted TSP, which greedily traverses an induced graph
of queries, maximizing the similarity between the current query Qi and all
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other unvisited neighboring queries Qj , where neighboring queries are those
sharing at least one term with Qi. Query-to-query similarity is measured as
S(Qi, Qj) =

∑
a∈Qi∩Qj

|L′(a)|, where |L′(a)| is the length in bytes of the com-

pressed postings list L′(a) for term a, the goal being to maximize the retained
posting volume at each query transition. Other similarities were also explored,
including ones based on term overlap, but this formulation gave the best results.
As an aside, both the TSP and Partitioned algorithms are employed by Cheng
et al. [9], and in future work we will also apply these algorithms to document
identifier reassignment [5] as a secondary reproducibility effort [26].

Cache Eviction. The second factor explored by Ding et al. was that of clair-
voyant cache management. Since the whole query log is known, the cache can
always evict the item not required for the longest, denoted here as CV, thereby
allowing optimal behavior [3]. The least recently used (LRU) policy is used as a
baseline mechanism.

Reproducibility Results. In the original evaluation [16] the cache size is
measured in millions (without units); we assume those to be millions of un-
compressed postings. Here we assume that cached lists will remain compressed
and be decoded on-demand, so as to maximize the number of retained lists, and
set the cache size to a sequence of fixed percentages of the original compressed
index size. We then count the volume of compressed postings transferred from
secondary storage through the whole of Q. Figure 2 shows all eight combinations
of log order and cache strategy for the two collections when measured this way.

The patterns of behavior observed in Figure 2 are consistent with those visi-
ble in Figure 1 of Ding et al. [16] (once the logarithmic vertical scale in Figure 2
is allowed for). In particular: the Sorted logs outperform the random (baseline)
orderings; the recursively partitioned “Gray clustered” logs perform even better
than the sorted logs; and in the second aspect of the experimentation, (and com-
pletely unsurprisingly, no foresight required) the clairvoyant caching approach
results in less data being transferred than does the LRU strategy. Figure 2 also
includes the approximate TSP-based query reordering technique, a second form
of clustering; it outperforms the Gray code-based reordering process. However,
the TSP ordering takes around 55 minutes to compute, whereas the Gray-code
partitioning takes only 10 seconds, meaning that the slight reduction in data
transferred via TSP is unlikely to be of interest.

5 Reducing Computation Via Intersection Caching

We now turn from list caching to intersection caching, seeking to confirm the
outcomes reported by Ding et al. [16], again using the two MSMARCO collections.

Methods Tested. Ding et al. add materialized term pairs to a fixed-size cache,
seeking to maximize the computational benefit achieved via each fixed volume
of pre-computed term intersections, with the computation cost of a query Qi es-
timated as C(Qi) =

∑
a∈Qi

fa, which is less precise than the ω(fa, fb) estimator
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Fig. 2: Index volume transferred by LRU and CV caching for the four different
orderings of Q, with cache size set as a percentage of the compressed index
size. The orange and blue dashed lines represent the worst-case (read a list
from disk each time it is requested) and best-case (read each list just once) I/O
performance, respectively.

presented in Section 2. They then construct an ordering of term pairs (described
in their Section 4.2) using the mechanism presented in Algorithm 1, which is
denoted here as Flexible-B4B. Ding et al. report average query execution speed of
approximately 6.8 millisec per query (presumed to be for conjunctive Boolean
queries of the kind we are also measuring here, as measured off a highly magnified
screenshot of their Figure 8, with the computed percentage savings corroborated
by their Figure 11); reducing to 5.0 millisec on average using a cache holding
8% of the index terms’ original posting, a 26% saving; and further decreasing to
approximately 4.6 millisec with a 30% term pair cache, a 33% saving.

We re-implemented the Flexible-B4B scheme, and also tested the static bang-
for-byte term-pair selection process (Static-B4B), and an even simpler mechanism
based purely on G(a, b), denoted Popularity. Both of these approaches are also
described in Section 2. In each experiment all of the postings lists were first
loaded into memory; then the timing commenced; then all of the planned pre-
intersections computed to populate the cache of term pair intersections; then
the query batch was executed in query-sorted order (Sorted in the context of
Figure 2); and finally, the timing was ended.

Reproducibility Results. Table 2 shows that the broad relationship between
the three approaches can be confirmed. Stepping across each row, increasing
the detail in the “merit estimation” process leads to decreased running times;
within each column, increasing amounts of cache memory also lead to decreased
execution times. Moreover, the gains achieved by the Flexible-B4B approach with
a 32% space overhead of 39% for MSMARCO-v1 and 27% for MSMARCO-v2 match
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Table 2: Reproduced results. Total elapsed time (seconds) to execute the entire
batch of queries, as a function of the volume of pre-computed intersections.
Query plan generation times were all a few seconds each and are not included.

Space (%)
Popularity Static-B4B Flexible-B4B

MSM-v1 MSM-v2 MSM-v1 MSM-v2 MSM-v1 MSM-v2

0 735 18,864 735 18,864 735 18,864
1 714 18,686 701 18,523 686 18,333
2 713 18,701 684 18,291 663 18,143
4 702 17,970 661 18,113 628 17,523
8 678 18,417 622 17,606 575 16,750
16 646 18,048 575 16,880 511 15,461
32 597 17,319 516 15,956 447 13,838
64 536 16,291 453 14,598 406 12,547

the gains achieved by Ding et al. [16], summarized above. Note that we are
measuring cache size here as byte-based percentages of the compressed index
size, and storing uncompressed intersection lists; whereas Ding et al. measure
percentages of posting counts. While these are similar scales, the latter is likely
to allow more postings to be stored at each percentage measurement point.

The average query execution times for the Flexible-B4B method with 32%
cache are 66.1 microsec (MSMARCO-v1) and 2.05 millisec (MSMARCO-v2), with
the speed-up relative to Ding et al. likely the result of hardware relativities since
2011. Note also that MSMARCO-v2 is a much larger collection (Table 1).

Strategic Pair-Based Query Reordering. We now introduce a different way
in which batches of queries can be expedited. Key to the new proposal is the
observation that most queries are relatively short (3.2 terms on average in our
test set) and hence having even one cached term pair per query represents a
worthwhile target. That insight allows us to reorient the quest from being a
search for the best mix of term pairs across the whole set of queries, to a query-
by-query search for a good term pair. We call that connection from a query to a
single term pair an association; and Algorithm 2 describes the process employed
to identify them. An initialization phase determines which pairs a, b ∈ V occur
at least two of the queries in Q. Three further processing phases then occur.

In Phase 1, steps 3 to 9, a best pair a′, b′ is tentatively associated with each
query, and at the same time an estimate of the savings that might accrue is
made, the latter via the computation at step 10, and credited to the associated
pair using accumulator E (a′, b′). Important new aspects of the estimation are
that only one pair is allowed to claim benefit, and that it further hedges the
computation by supposing that any of the other numpairs available in Qi might
also be used, albeit at a reduced saving. Assuming those other options to be
uniformly spread across the range from zero to ω(µi, fb′) means that the marginal
benefit of a′, b′ needs to be discounted by numpairs.
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Algorithm 2 Associating at most one term pair with each query.

for each pair a, b ∈ V do ▷ Phase 0: initialization
2: set E(a, b)← 0 and set valid(a, b)← |T (a, b)| > 1

for each query Qi ∈ Q do ▷ Phase 1: tentative associations
4: set numpairs ← 0

for each term pair a, b ∈ Qi such that fa ≤ fb and valid(a, b) do
6: set numpairs ← numpairs + 1

record as a′, b′ the a, b pair that maximizes fb/fa for Qi

8: if numpairs > 0 then
associate the pair a′, b′ with Qi

10: set E(a′, b′)← E(a′, b′) + ω(µi, fb′)/numpairs

for each pair a, b ∈ V do ▷ Phase 2: pair pruning
12: if E(a, b) < ω(fa, fb) then

set valid(a, b)← false

14: repeat steps 3 to 9 ▷ Phase 3: consolidated associations

0

0
fat cat

hat cat
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fat:cat

cat:eat

cat:rat

eat:rat

fat:eat

hat:cat
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cat eat rat

fat cat eat

–    (hat, cat)
+    (

hat, cat)
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–    (cat, eat)

–    (fa
t, eat)

Fig. 3: Associations between queries and term pairs. Each query contains multiple
term pairs, of which exactly one is selected (possibly the “empty pair”). Labeled
edges represent the net saving of this possible set of associations.

Phase 2, steps 11 to 13, then factors in the pre-computation cost, and removes
from contention (represented as the set valid) any pairs found to not be of benefit.
That leaves a reduced set of “known to be definitely useful” pairs available;
they are used in Phase 3, step 14, which recomputes the associations. Queries
previously associated with term pairs that got removed must be re-associated,
with any new associations formed certain to be of net benefit. That is, in Phase 3
some queries have the tentative association confirmed, some queries get a revised
association, and some queries lose their associations and join a pool of “immune”
queries; with every such decision definitely decreasing the estimated execution
time. Figure 3 gives an example that illustrates the way in which each query has
exactly one associated term pair selected, with immune queries associated with
the empty term pair at the top, and benefits gained via the selected edges.
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Table 3: Query processing using Algorithm 2. All results are in total seconds,
and may be compared with those in Table 2. See the text for details.

Approach MSM-v1 MSM-v2

Phase 1 only 463 13,138
Phases 1–3, but without discounting by numpairs 407 11,825
Phases 1–3, including the discounting at step 10 367 10,684

Table 4: Popular term pairs in the context of the MSMARCO-v2 collection fre-
quencies: the five with the greatest number of associations (left); and the five
with the highest match percentage over the |T (a, b)| queries containing a and b
(right), where the match percentage in the rightmost column in each of the two
groups is the ratio of assigned associations (“Assoc.”) as a fraction of |T (a, b)|.

a b Assoc. |T (a, b)| %

near me 3,669 30,303 12.1
icd 10 3,635 8,084 45.0
between differ 3,447 7,534 45.8
mean what 3,149 26,551 11.9
side effect 2,977 9,632 30.9

a b Assoc. |T (a, b)| %

invent who 1,042 1,430 72.9
forecast 10 1,007 1,411 71.4
fargo well 2,610 3,734 69.9
orlean new 1,321 1,905 69.3
depot home 2,302 3,473 66.3

The query processing plan is then simple: each valid term pair is computed,
all of its associated queries are resolved, and then that intersection is discarded.
Only a miniscule amount of cache storage is required – in our MSMARCO-v2

experiments, the peak space needed is just 41.5 million postings.

Table 3 shows the gains resulting from this new approach, with three rows
of results: first, using the Phase 1 associations alone, without the pruning step
that is part of Phase 2; then without the discounting by numpairs, which is too
optimistic in its estimations and retains pairs that are of marginal or negative
benefit; and then, in the last row, using the mechanism that is described in
Algorithm 2, including the discounting. Each variant takes less than 30 seconds
to generate a plan. Not only does this approach allow batch query processing
without the need for a large intersection cache, it is also notably faster than the
Flexible-B4B method of Ding et al. [16], saving a further 20% and 23% of running
time (MSMARCO-v1 and MSMARCO-v2 respectively) compared to the “32% cache
space” row in Table 2.

Finally, Table 4 illustrates why Algorithm 2 is so effective. The important
associations derived for MSMARCO-v2 do indeed correspond to term pairs that
have natural relationships with each other. Note that all terms were stemmed,
and that they are shown with fa ≤ fb rather than in query appearance order.
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6 Conclusion

We have reproduced the results presented by Ding et al. [16], and confirmed that
list and intersection caching are effective techniques that can be applied when
batches of conjunctive queries are to be processed in a non-interactive manner.
In addition to having more precisely documented those methods, we have added
a new “term pair association” mechanism to the repertoire. It allows even better
batch execution times to be achieved, without requiring large volumes of cache.
That means that list caching and strategic pair intersection planning can now
be combined, to get the benefit of both enhancements. We hope that our re-
producibility effort and public code resource will encourage further investigation
into this area of research.
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