
Accelerating Learned Sparse Indexes Via Term Impact Decomposition

Joel Mackenzie
University of Queensland, Australia

joel.mackenzie@uq.edu.au

Antonio Mallia
Amazon Alexa, Italy

malliaam@amazon.com

Alistair Moffat
University of Melbourne, Australia

ammoffat@unimelb.edu.au

Matthias Petri
Amazon Alexa, USA
mkp@amazon.com

Abstract

Novel inverted index-based learned sparse
ranking models provide more effective, but
less efficient, retrieval performance compared
to traditional ranking models like BM25. In
this paper, we introduce a technique we call
postings clipping to improve the query effi-
ciency of learned representations. Our tech-
nique amplifies the benefit of dynamic prun-
ing query processing techniques by accounting
for changes in term importance distributions
of learned ranking models. The new clipping
mechanism accelerates top-k retrieval by up to
9.6× without any loss in effectiveness.

1 Introduction

Sparse term importance representations such as
DeepImpact (Mallia et al., 2021) and uniCOIL (Gao
et al., 2021; Lin and Ma, 2021) have enabled the
use of effective transformer-based text represen-
tations that can match the effectiveness of recent
dense text representations (Karpukhin et al., 2020;
Qu et al., 2021) while still being supported by in-
verted indexes and their query operations. This
is of importance as inverted indexes have been
optimized to provide search functionality in dis-
tributed settings at web-scale through 40 years of
research, providing a variety of time, space and
retrieval quality tradeoffs; while also supporting
efficient updates, advanced querying modes such
as phrase matching or filtering, and good scalabil-
ity, all of which are crucial in real-world settings
(Risvik et al., 2013; Tonellotto et al., 2018).

One of the key techniques that enables efficient
top-k query processing in inverted indexes is stor-
ing additional metadata about index term impor-
tance scores (also referred to as impacts), seek-
ing to facilitate the bypassing of the majority of
the matching documents, and thus allowing faster
retrieval than would be possible via exhaustive
disjunctive processing. For example, dynamic
pruning algorithms such as MaxScore (Turtle and

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 14 16 18 20 21 22 23 24
List Bucket [b]

N
or

m
al

iz
ed

 L
is

t M
ax

 Im
pa

ct

BM25 DocT5Query DeepImpact uniCOIL

Figure 1: Normalized maximum list impact dis-
tribution stratified by list length buckets b ∈
[2b, 2b+1). Classical schemes such as BM25 and
DocT5Query exhibit small maximum impacts for
long lists, whereas DeepImpact and uniCOIL assign
high importance to terms regardless of their doc-
ument frequency. Note the irregular scale on the
horizontal axis.

Flood, 1995) and WAND (Broder et al., 2003) store
the index-wide maximum impact of each term; at
query-time, these impacts can be used to rapidly
estimate document scores, allowing documents that
have no prospect of entering the current min-heap
of k results to be bypassed.

Traditional similarity models such as BM25 guar-
antee that frequent terms have low importance
scores, a symbiotic relationship that allows fast
query processing. On the other hand, recent
transformer-based learned term importance tech-
niques such as DeepImpact are not constrained by
term occurrence frequency when assigning impor-
tance scores to terms in documents. For example,
consider the term “does” in an English corpus. Tra-
ditional models such as BM25 would assign a low
impact for this term in all documents, since it oc-
curs so frequently; a direct effect of inverse docu-
ment frequency (IDF). On the other hand, learned

Impact MSMARCO-v1 Passage

0.91 Does are the females in the deer family of mammals, individually called a doe (pronounced doe as in toe). The plural
of doe can also be doe. Does is also the word meaning the present tense of the verb do. Pronounced duz as opposed to
the pronunciation for the female deer.

0.71 You spelled it right in the question: does. The word does (performs action) is a verb, and the plural of the noun doe
(female deer). Many people mix up two similar words: dose and does. Dose is a noun and is the amount of medication
prescribed. Does is a verb, a form of to do.

0.59 Job Seekers The District of Columbia Department of Employment Services (DOES) was created to develop Jobs for
People and People for Jobs. DOES provides job seekers with a number of employment opportunities through its
American Job Centers.

0.50 Take your medication exactly as prescribed. Taking higher does of Benzedrine may cause a change in a person’s sex
drive, allergic reactions, chills, depression, irritability or mood swings, and problems with the digestive system.

0.02 when my dog passes wind its the worst smell ever. does anyone know how to stop it smelling so bad. Add your answer.

Table 1: Sample MSMARCO-v1 passages and the normalized impact assigned by DeepImpact to the word
“does”, which occurs in 61% of all passages. High impact scores can be assigned to common terms
legitimately (based on the context of the term), or may be caused by misspellings, acronyms, or homonyms.

models are trained to exploit the contextual infor-
mation of a passage to assign term impacts, result-
ing in high importance scores for even the most
common terms. Table 1 demonstrates this behav-
ior for DeepImpact, where passages extracted from
MSMARCO-v1 contain normalized impact scores of
widely varying magnitudes. While DeepImpact as-
signs impacts from 0.91 (very important) all the
way down to 0.02 (not important) for the term
“does”, the equivalent maximum impact observed
over our two BM25-based indexes (see Section 4)
are 0.21 (BM25) and 0.004 (DocT5Query).

Figure 1 further highlights the pervasive nature
of this issue. Learned representations such as Deep-
Impact or uniCOIL assign high term importance to
even very frequent terms (such as “does”), whereas
BM25 always assigns low importance to such terms.
This divergent behavior substantially reduces the
ability of MaxScore and WAND to bypass low-impact
documents during querying, with both techniques
relying on maximum list-wise impact scores to
prune the search space.

Contribution We adapt the MaxScore and WAND
dynamic pruning mechanisms to enable efficient
query processing for learned term importance
schemes such as DeepImpact via a simple technique
we call term impact decomposition. We describe
partitioning schemes that separate the postings for
each term into two groups – those that are high-
impact, and are likely to result in documents being
scored; and those that are low-impact, and more
likely to be associated with bypassed documents;
and present a new form of impact decomposition

that we call postings clipping. When integrated into
the retrieval engine, impact decomposition allows
almost 10× faster top-k term-based querying, with
negligible increases to index storage costs, and no
effect on result quality.

2 Background

Term-Based Similarity Many retrieval similar-
ity formulations can be expressed as a sum over
per-document query-term impacts, computed for
document d and query Q as

S(Q, d) = C(d) +
∑
t∈Q

wt,d (1)

where C(d) is a static score component associated
with document d; and wt,d is the importance, or
impact, of term t in document d (see, for example,
Zobel and Moffat, 2006). The values of wt,d might
be pre-computed at indexing time and stored in the
inverted index in quantized form; or might be com-
puted via a function F () from raw index statistics
such as term frequency and document length.

Learned Sparse Models The recent develop-
ment of pre-trained contextualized language mod-
els (LMs) has resulted in impressive benefits in
search effectiveness, albeit with higher retrieval
cost than traditional lexical models (MacAvaney
et al., 2019; Pradeep et al., 2021; Khattab and Za-
haria, 2020). This has motivated recent work on
making transformer-based ranking more efficient
(Cohen et al., 2022; Karpukhin et al., 2020; Zhan
et al., 2021).

Different solutions have been proposed to ad-
dress this performance bottleneck, including the

application of approximate nearest neighbor search
on dense representations (see, for example, Izacard
et al., 2020; Zhan et al., 2022; Yamada et al., 2021).
Another approach is to apply LMs to improve the
effectiveness of inverted index-based “sparse” rep-
resentations.

Document expansion is one such innovation. It
uses LMs to predict expansion terms to add to each
document in an effort to address the vocabulary
mismatch problem (Zhao, 2012), while still apply-
ing traditional scoring regimes like BM25. Cur-
rently, DocT5Query (Nogueira and Lin, 2019) and
TILDE (Zhuang and Zuccon, 2021b,a) are the most
effective expansion methods.

LMs can also be used to learn term importance
directly. Early approaches such as DeepCT (Dai and
Callan, 2019) learned an updated term frequency
value which could be plugged into the existing rank-
ing model. Other more effective approaches such as
DeepImpact (Mallia et al., 2021), uniCOIL (Lin and
Ma, 2021; Ma et al., 2022), TILDE (Zhuang and Zuc-
con, 2021a),1 and SPLADE (Formal et al., 2021b,a)
have been devised which predict the impact of each
term within each document (that is, they learn the
value of wt,d in Eqn. 1). These models are all tuned
to optimize the downstream retrieval task, but differ
in their vocabulary structures, document expansion
techniques, and query expansion strategies. For ex-
ample, DeepImpact first expands the documents in
the collection via DocT5Query, and then directly es-
timates a single impact for each token in each doc-
ument. The model is trained by directly optimizing
the sum of the query term impacts to maximize the
score difference between relevant and non-relevant
documents for a query. Similar in spirit, uniCOIL
also performs weighting on the query terms, such
that document ranking becomes a weighted sum
over term impacts.

We focus on DeepImpact and uniCOIL as effective
learned representations, but our methods are also
applicable to other learned sparse techniques.

Indexing An inverted index stores one postings
list It for each distinct term t in the given text
collection, with each postings list containing a se-
quence of postings of the form It,i = ⟨dt,i, wt,i⟩,
where dt,i is the document number of the i th docu-
ment containing t, and wt,i can be taken to be the
corresponding impact score (see Eqn. 1). These
lists are normally stored in increasing document

1Note that TILDE can be used for both document expan-
sion and for term importance estimation

Document Space

Term A

Im
pa

ct UB

UA Im
pa

ct
S

co
re

Once 3 documents processed,
 is smaller than , allowing
all subsequent orange
documents to be bypassed UA

A UB

UBUA+

Document Space

Document Space

U

Term B

Figure 2: Dynamic pruning on a two-term query
(term A, top left, and term B, top right) for top
k = 2 retrieval. At the start of processing, the
heap threshold θ is−∞. After processing the three
documents shown in green (bottom) we have θ >
UA, and documents that contain only term A can
be bypassed from now on.

order, and compressed using integer compression
techniques, see Zobel and Moffat (2006) and Pibiri
and Venturini (2021) for examples and further ex-
planation.

Querying To retrieve the top-k highest scoring
documents for a bag-of-terms query Q consisting
of q = |Q| query terms, a document-at-a-time
processing regime is often used (Tonellotto et al.,
2018). All q postings lists are open concurrently,
each with a local cursor to step through the post-
ings. Each document d that is encountered is fully
scored at that time, and a min-heap maintained of
the k highest-scoring documents encountered so far.
Once all q postings lists are exhausted, the k docu-
ments in the heap can either be directly presented to
the user or passed to another processing phase for
a more sophisticated similarity computation that
re-ranks that initial answer set.

MaxScore Algorithm 1 provides details of
document-at-a-time querying processing, and also
introduces the MaxScore dynamic pruning mecha-
nism of Turtle and Flood (1995), structured in a
manner that allows the development we propose in
Section 3. In this description the Ut per-term upper
bounds are a static attribute of the collection, estab-
lished at indexing time, and It,c[t] is the “current”
posting for term t, indicated by the cursor c[t], with
each index list It ordered by increasing document
number, denoted It,c[t].d.

Figure 2 helps explain the pseudo-code. In the
diagram a two-term query is being processed, con-

Algorithm 1 Standard MaxScore. Input is a set of q
postings lists It, with It,i = ⟨d,w⟩ the docnum and
impact score of the i th posting for the t th term;
and a vector Ut = maxi{It,i.w}, the maximum
impact for the t th term.

1: active← {0 . . . q − 1} // active terms
2: passive← {} // passive terms
3: sum_pass← 0 // sum of passive Ut’s
4: heap← {} // heap of “best so far”
5: c[t]← 0 for 0 ≤ t < q // cursors
6: θ ← −∞ // heap threshold
7: while active postings remain do
8: // select next document, match all cursors
9: d← min{It,c[t].d | t ∈ active}

10: for t ∈ passive do
11: c[t]← SeekGEQ(It, d)
12: // score document
13: scored ←

∑
{It,c[t].w | It,c[t].d = d}

14: // advance cursors
15: for t ∈ active do
16: if It,c[t].d = d then
17: c[t]← c[t] + 1

18: // check against heap, update if needed
19: if scored > θ then
20: heap← heap ∪ {⟨d, scored⟩}
21: if |heap| > k then
22: eject the least weight ⟨d, scored⟩
23: heap item and update θ

24: // try to expand passive set
25: y ← argmaxt{|It| | t ∈ active}
26: if sum_pass + Uy < θ then
27: // toggle term y from active to passive
28: active← active− {y}
29: passive← passive ∪ {y}
30: sum_pass← sum_pass + Uy

sisting of postings for term A (top left) and term B
(top right), and seeking the highest-scoring k = 2
documents. The index also records UA and UB , the
maximum impact contributions of A and B across
the collection. Once the first three documents in
the union set of A and B have been scored, the
k th largest-known document score – denoted by
θ – is greater than UA. After that point no further
documents that contain term A alone need be con-
sidered; all candidates for scoring must contain B.
In terms of Algorithm 1, term A is thus perma-
nently moved from the active set to the passive set
(steps 25–30) to record this change of status.

Algorithm 1 includes a number of subtleties. The

ordering assumed at step 25 is constant, and com-
puted once upon query commencement, rather at
each loop iteration. As well, steps 25 to 30, shown
as executing after every document has been scored,
can be carried out infrequently without affecting
the correctness of the top-k result set. For example,
they might trigger only every 100 or 1000 iterations
of the main while loop at step 7.

The key invariant in Algorithm 1 is that contribu-
tions from passive terms alone cannot yield a docu-
ment score large enough to make it into the current
top k answer set. That means that postings that ap-
pear only in passive postings lists can be bypassed,
achieved at step 11 by function SeekGEQ(It, d),
which advances the cursor c[t] until a document
number ≥ d is found in It. Processing terminates
when all of the postings associated with the ac-
tive terms have been consumed. At that time, the
required top-k documents are all in the heap.

WAND The WAND dynamic pruning mechanism
(Broder et al., 2003) makes use of similar logic.
But instead of labeling entire terms as being active
or passive, it constantly rearranges the list cursors
according to their next documents, in effect treating
individual postings as being passive or active. That
means that it can be more flexible in determining
which postings combinations might yield scores
greater than θ, and hence is more discerning in
terms of which documents need scoring. Those
gains must be offset against the additional cost of
maintaining the list cursors in sorted order. Petri
et al. (2013) give pseudo-code for WAND pruning.

Block-Max WAND Even more precise control
over which documents need to be fully scored is
achieved if localized upper bounds are used (de-
noted Ut,b) as well as whole-of-list Ut values. In the
BlockMax-WAND (BMW) and Variable BlockMax-
WAND (VBMW) approaches there are multiple Ut,b

values stored for each postings list, each of which
provides a localized maximum impact bound for a
block of contiguous postings (Ding and Suel, 2011;
Mallia et al., 2017; Mallia and Porciani, 2019).
During querying, global Ut values are used to se-
lect a candidate document, and the Ut,b values are
then used to refine the score estimate before check-
ing whether the document should be scored or by-
passed. Thus, storing these additional bounds al-
lows more documents to be bypassed, albeit with
increased processing required to handle the com-
plex decision logic that arises, and the additional

space costs required to store localized bounds.

High-Impact List Segments and Priming Sev-
eral authors have proposed explicitly or implicitly
splitting postings lists into two (or more) parts, a
high-impact segment H(t) and a low-impact seg-
ment L(t) to facilitate efficient processing; see,
for example, Strohman and Croft (2007), Ding
and Suel (2011), Daoud et al. (2016), Daoud et al.
(2017), Kane and Tompa (2018) and Mackenzie
et al. (2022a).

Another technique known as priming (Kane and
Tompa, 2018; Petri et al., 2019) improves query
performance by estimating lower bounds on the fi-
nal heap threshold θ: if the value of the k th highest
impact (or a value for the k′ > k th highest impact)
for any of the q query terms is known, then the
heap threshold θ can be initialized to the largest of
those (up to) q values – it is certain that there will
be k or more documents in the collection that score
more highly than that value, even in the absence of
any term overlaps. Moreover, if those k′ high im-
pact postings are maintained as a separate postings
list, then the q high-impact list segments can be
resolved against each other before any low-impact
postings are considered, and might further lift the
value of θ used when the q low-impact postings
lists are employed to finalize the query.

3 Impact Decomposition

This section introduces the notion of postings list
splitting, and shows how it can be combined with
both MaxScore and with WAND variants. We then
introduce a new technique, postings clipping that
replicates the high-impact postings, rather than sep-
arating them from the low-impact postings. It has
the benefit of allowing more precise score estima-
tions, and hence faster pruned querying.

List Splitting Ding and Suel (2011), and later
Daoud et al. (2016) and Kane and Tompa (2018),
note that each postings list It can be split into two
parts, denoted here as H(t) and L(t), with H(t)
containing the postings with the highest impacts
for t, and L(t) containing all the remaining ones.
SinceH(t) and L(t) are disjoint, query processing
algorithms can treat them as independent terms.

The top part of Figure 3 illustrates list splitting.
The complete set of postings for some term t (left)
is reduced from (in the example) 21 postings to
17 posting to form L(t), with the other 4 postings
assigned to H(t). Each of L(t) and H(t) then

High listLow ListSingle List

(b) Postings Clipping

| | = 21
Ut

t

| | = 21

| | = 17

| | = 4
Ut

(t)

(t)

U

U

Low List High listSingle List

t

(a) List Splitting

U
U (t)

(t)

(t)

t (t)

(t)

(t)

(t)

(t)

| | = 21t

(t) | | = 4(t)

Figure 3: Two types of impact decomposition. List
splitting involves moving high-impact postings into
a separate postings list, H(t); whereas postings
clipping involves trimming the impact scores in
the low-impact list, and creating new postings in a
separate listH(t) to account for the remainder.

receives its own upper bound (middle and right,
UL(t) and UH(t) respectively), with UH(t) > UL(t).

A number of splitting rules can be considered.
For example, a fixed fraction of the original list
might be taken; or the split could be based on lo-
cal or global threshold scores. In this work, we
take a fixed fraction, set at 1/64 (based on prelim-
inary experimentation) and respecting quantized
impact levels, so that |H(t)| is maximized subject
to |H(t)| ≤ |It|/64, and also subject to the small-
est impact in H(t) being greater than UL(t). We
also only apply splitting to lists with more than 256
postings, as short lists are always handled quickly.

Where the impact score distribution of the post-
ings is skewed and has a long tail, splitting results
in reduced variance inside each part. The maxi-
mum term importance Ut stored for any list It is
intended to approximate the distribution of the im-
pacts of the postings in that list; and hence storing
two upper bounds, one forH(t) and one for L(t),
allows a better approximation to the underling dis-
tribution. Note also that list splitting is performed
at indexing time and results in only a modest in-
crease in index size. At query time, each term is
mapped to (one or) two postings lists, with at most
twice as many cursors to maintain, but the same
total number of postings to be processed.

MaxScore, WAND, and BMW Our first obser-
vation is simply that MaxScore should be imple-
mented so that the static ordering over terms as-
sumed at step 25 of Algorithm 1 is by decreasing
list length, rather than by the more usual increas-

ing Ut, respecting the separation of these concepts
that was noted above (that is, IDF is not obeyed by
learned sparse models). The MaxScore pseudo-code
presented earlier already shows this adaptation.

There are then a number of ways of proceeding
when list splitting is considered. The simplest op-
tion is to ignore any knowledge of the list pairings,
and allow a q-term query to be processed in the
standard document-at-a-time manner over as many
as 2q postings lists (Kane and Tompa, 2018). In
terms of MaxScore, any combination of low- and
high-impact lists might be in passive, with the re-
mainder in active. However the use of the Ut limits
to decide if a document that is in an active list
should be scored remains valid – no document that
might generate a similarity score greater than θ and
thus should get scored will get bypassed. On the
other hand, when the L(t) list for one of the terms
is in passive (and because it is longer, it will enter
earlier), only the postings inH(t) can now trigger
a document scoring caused by term t, and hence
there is a very real capacity for additional docu-
ments to be bypassed. Similar considerations arise
with WAND and BMW: in all three processing modes
the mere act of splitting the lists introduces the pos-
sibility of accelerated query processing, without
risking any loss in terms of answer set correctness.

As an orthogonal enhancement, priming can be
applied whenever any high-impact list contains k
or more postings, |H(t)| ≥ k. If that holds, then

θ0 = max{UL(t) | t ∈ Q ∧ |H(t)| ≥ k} (2)

can be used as a priming value for the heap bound,
without risking the integrity of the top-k answers.

Next, if additional bookkeeping operations can
be tolerated, it is also possible to compute what
we denote as smart bounds. When the low-impact
list for some term t first joins passive, the variable
sum_pass is correctly increased by UL(t). But if
and when the partner termH(t) also joins passive,
increasing sum_pass by UH(t) is needlessly pes-
simistic, since no document can appear in both
L(t) and H(t). Hence, the correct second incre-
ment associated with term t is by UH(t) − UL(t).
In the case of MaxScore, the corresponding smart
bounds are easily computed, and are required only
occasionally – when a postings list is moved from
active to passive. However, for WAND and BMW
the estimations must be modified much more fre-
quently, and while smart bounds can certainly be
computed, their benefit is less clear. One key part of

the experimentation in Section 4 is to quantify the
relationship between document scoring and bounds
manipulation. Ding and Suel (2011) and Kane and
Tompa (2018) also noted the idea of smart bounds
estimation in their descriptions of list splitting, but
they did not consider MaxScore-based processing.

Postings Clipping Our additional proposal – de-
noted postings clipping – is illustrated in the bot-
tom half of Figure 3. Rather than partitioning the
set of postings in It across L(t) and H(t), every
posting remains in L(t), and we “clip” the high-
impact postings by slicing them into two parts, and
forming a posting pair. The base part remains in
L(t) as a posting with an impact equal to UL(t),
the maximum score contribution permitted in L(t);
and the second component of the pair becomes a
new posting inH(t), to account for the “trimmed”
part of the original impact value, and retain the
same total.

This arrangement has the singular advantage of
no longer requiring any smart bounds management,
or equivalent run-time manipulation of score esti-
mates. Smart bounds are needed in the list split-
ting approach of Kane and Tompa (2018) to adjust
for the constraint that no document can appear in
both L(t) andH(t), and hence that UL(t) + UH(t)

is an over-estimate (by an addend of UL(t)) of
t’s true upper bound Ut. But with postings clip-
ping, UH(t) is instead set to the maximum residual
amount across all of t’s postings, and hence we
have Ut = UL(t) + UH(t). In turn, that means that
when queries are being processed the lists L(t) and
H(t) can be treated as if they were derived from
completely independent terms, with all interactions
between them handled by the underlying process-
ing logic, be that MaxScore, WAND, or BMW.

That is, while there are more total postings to be
stored and processed, the change from list splitting
with smart bounds to postings clipping substan-
tially simplifies the query-time processing logic.
Indeed, with the exception of priming – which can
still be applied on the basis that is noted in Eqn. 2
– a MaxScore-based postings clipping implemen-
tation remains exactly as is shown by the logic
provided in Algorithm 1. The result is that – as
we demonstrate in Section 4 – quite dramatic re-
ductions in query processing times for the learned
sparse retrieval models can be achieved.

Figure 4 crystallizes the difference between list
splitting and postings clipping. In the left pane (list
splitting) the UH(t) values rise as UL(t) increases,

List Splitting Postings Clipping

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Normalized Max Impact [Low]

N
or

m
al

iz
ed

 M
ax

 Im
pa

ct
 [H

ig
h]

Figure 4: Bounding scores for list splitting (left)
and postings clipping (right) using DeepImpact, with
UH(t) plotted as a function of UL(t) for the unique
terms occurring in the MSMARCO-v1 queries.

plotted over the set of MSMARCO-v1 query terms;
whereas in the right pane (postings clipping) UH(t)

becomes increasingly constrained as UL(t) grows.
The difference affects the pruning bounds estima-
tion, and while it can be partially ameliorated by
smart bounds adjustments, the postings clipping
mechanism is more precise.

4 Experiments

We now describe experiments that quantify the ben-
efits arising from the postings clipping approach.
Our experiments make use of both MSMARCO-v1
(8.8 million passages) and MSMARCO-v2 (138.4
million passages) collections, four representative
ranking algorithms, and the PISA query process-
ing system which was recently shown to outper-
form the commonly used Anserini system for
document-at-a-time retrieval over learned sparse
indexes (Mackenzie et al., 2021). Full details of the
experimental setup are provided in Appendix A.

Index Size Table 2 reports the space consump-
tion of each index/model combination for both the
default index, and the index with postings clipping.
Since clipping is applied only to postings with more
than 256 elements, and even then only adds 1/64 as
many new postings, the space overhead compared
to the default index is negligible. For instance, the
largest overhead of 600 MiB to the≈ 33 GiB index
for the uniCOIL model on MSMARCO-v2 represents
an increase of only 1.8%.

Query Speed Table 3 presents query processing
times recorded for the MSMARCO-v1 collection and
DeepImpact retrieval, with response latency mea-
sured as average milliseconds per query, and with

Collection Model Default Clipping

MSMARCO-v1 BM25 0.8 0.8
DocT5Query 1.2 1.2
DeepImpact 1.6 1.6
uniCOIL 2.1 2.2

MSMARCO-v2 BM25 20.3 20.6
DocT5Query 27.7 27.9
DeepImpact 24.7 25.0
uniCOIL 32.7 33.3

Table 2: Index space requirement, in GiB, for de-
fault inverted indexes, and those with postings clip-
ping. Results are shown for both collections and
all four ranking models.

Method k = 10 k = 1000

MaxScore baseline 8.1 18.8
+ length-based ordering 6.3 18.0
+ 1/64 list splitting 2.0 7.9
+ 1/64 priming 1.9 6.3
+ smart bounds 2.1 7.0

or postings clipping 1.6 5.9

WAND baseline 14.9 34.0
+ 1/64 list splitting 3.5 13.8
+ 1/64 priming 3.2 11.3
+ smart bounds 3.0 11.1

or postings clipping 2.7 10.8

VBMW baseline 4.2 12.2
+ 1/64 list splitting 3.0 11.7
+ 1/64 priming 2.9 9.8
+ smart bounds 2.8 10.0

or postings clipping 3.3 9.7

Table 3: Query processing times, all in average mil-
liseconds per query, for the MSMARCO-v1 collection
and DeepImpact retrieval model. Algorithmic en-
hancements are cumulative stepping down each of
the three blocks in the table, except for postings
clipping, which is an independent enhancement rel-
ative to smart bounds. Similar relativities were also
observed in regard to median query times, and 90%
and 99% tail latency query times.

the three blocks of values corresponding to three
dynamic query pruning approaches. Within each
block, we systematically add heuristics. First to
be added in the MaxScore block is static term or-
dering based on length rather than on maximum

Method BM25 DocT5Query DeepImpact uniCOIL

k = 10 1000 k = 10 1000 k = 10 1000 k = 10 1000

MaxScore baseline 11.0 38.7 8.8 28.2 828.0 1170.4 164.9 267.9
+ postings clipping 10.5 30.8 8.7 26.2 50.6 108.2 46.5 114.6

WAND baseline 15.8 61.3 17.4 60.3 1972.9 2592.7 213.4 510.2
+ postings clipping 10.4 36.1 11.5 41.0 166.2 449.0 54.4 169.6

VBMW baseline 11.3 37.5 12.0 44.7 488.2 719.2 128.2 219.6
+ postings clipping 13.4 39.4 13.7 45.4 167.8 293.3 164.7 235.4

× Speedup on best bl. 1.06 1.22 1.01 1.08 9.65 6.65 2.76 1.92

Table 4: Query processing times, all in average milliseconds per query, for the MSMARCO-v2 collection,
four retrieval models, and three dynamic pruning approaches. The fastest time in each column is
highlighted in blue, and the best of the three baseline approaches in each column is shown in black. The
speedups in the last row are the ratio between the black and blue values in that column.

impact score; then the list splitting mechanism is
added, with 1/64 of the postings in each list longer
than 256 extracted and placed in the high-impact
listH(t); then the application (where possible) of
Eqn. 2 to set an initial heap threshold; then the fur-
ther addition of smart bounds. Finally, the last row
in each block shows the combination of postings
clipping, again with 1/64 postings taken intoH(t),
in conjunction with priming (and length-based or-
dering for MaxScore). Both WAND and BMW apply
the smart bounds adjustments during the pivoting
step, and have no equivalent to the MaxScore static
sorting step. The fastest query time in each of the
six sections is highlighted in blue.

As can be seen, for DeepImpact retrieval, the
fastest approach in five of the six table sections is
achieved by MaxScore pruning with postings clip-
ping. That combination takes less than half the
time of standard MaxScore processing. The gains
from posting clipping are less for WAND and VBMW,
in part because both algorithms exhibit greater sen-
sitivity to doubling the number of query terms.

Table 4 then applies all four retrieval models to
the large MSMARCO-v2 collection. The six rows
correspond to the first and last rows in each block
in Table 3, with the first row in each pair showing
“standard” retrieval, applying an inverted index and
a dynamic pruning method; and then the second
row compares that baseline against what can be
achieved by postings clipping, priming using the
same UL(t) information that arises from the clip-
ping, and (in the case of MaxScore), the matched
static sorting. The best baseline in each column is

shown in black, and the best overall time in each
column in blue. Compared to a standard computa-
tion, postings clipping creates speedups of between
two and nearly ten in connection with the two most
expensive models, with MaxScore plus postings clip-
ping being the best overall method for both k = 10
shallow retrieval and k = 1000 deep retrieval.

Retrieval Quality All of the enhancements inves-
tigated above result in rank-safe effectiveness. That
is, the changes to the indexing structures and query
processing regimes shown in Tables 3 and 4 do
not degrade the quality of results compared to the
unmodified algorithms, making the speedups even
more attractive to search practitioners. Detailed
effectiveness results for the four retrieval models
are presented in Appendix B.

5 Conclusion and Future Work

To keep up with increasingly large volumes of data,
search practitioners require sophisticated structures
and processing algorithms, so that response times
can remain plausible. In this paper, we have demon-
strated the speed benefits that arise through the
use of a new technique we call postings clipping.
We have established new benchmarks for query-
ing speed, with minimal costs overheads, for both
shallow k = 10 and deep k = 1000 retrieval. Our
techniques can also be embedded as part of a multi-
phase processing stack, and are applicable to both
normal term-based search and also to retrieval via
enhanced learned sparse approaches.

Limitations

This paper modifies existing inverted index-based
storage and query processing schemes to handle the
different impact distributions produced by learned
index representations. We have not explored how
adjusting the training objective of models such as
DeepImpact could produce better impact distribu-
tions directly targeting efficient query processing
algorithms that exploit list upper bounds. Such ap-
proaches, if they were fruitful, would potentially
mitigate the need for the techniques proposed in
this paper.

Table 1 indicates that some of the latency prob-
lems arise from learned representations distinguish-
ing between different semantic meaning of words,
correctly assigning high importance to terms based
on context. We have not explored incorporating
these pre-index construction insights into the pro-
posed splitting and subsequent query processing
schemes, and instead have relied solely on numeric
impact values. It is possible that making splitting
decisions in conjunction with the learning process
might lead to even better outcomes.

Resource constraints have meant that we have
restricted our investigation to the DeepImpact-
and uniCOIL-based learned sparse representations.
While we believe our techniques will provide sim-
ilar benefits to other learned sparse retrieval tech-
niques such as TILDE (Zhuang and Zuccon, 2021a)
and SPLADE (Formal et al., 2021b,a), we have not
explored those approaches as part of this work.

Finally, our investigation explored how split lists
can be used to prime the initial heap threshold θ.
Recent work has shown that more accurate predic-
tions can further accelerate querying on traditional
ranking models (Petri et al., 2019; Mallia et al.,
2020). To determine whether these approaches
translate to learned sparse models, we applied ideal-
ized “oracle” thresholds to our experimental frame-
work (see Appendix B for details). While the re-
sults are promising (up to a 2.1× speedup over the
best results in Table 4), it remains unclear if exist-
ing threshold estimators can be applied to learned
sparse models, or if more sophisticated estimators
are necessary.

Ethics Statement

The authors have no external conflicts of interest
to declare, and have not been required to seek any
ethics clearances in order to undertake this work.

If widely adopted, the techniques we propose

will lead to fewer computational resources being
required for querying tasks carried out via learned
sparse models, and hence reduced electrical con-
sumption and greenhouse emissions.

Acknowledgements

This work was supported by the Australian Re-
search Council (project DP200103136). We thank
the referees for their helpful suggestions.

References
V. N. Anh, O. de Kretser, and A. Moffat. 2001. Vector-

space ranking with effective early termination. In
Proc. SIGIR, pages 35–42.

N. Arabzadeh, A. Vtyurina, X. Yan, and C. L. A.
Clarke. 2021. Shallow pooling for sparse labels.
arXiv:2109.00062v2.

P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao,
X. Liu, R. Majumder, A. McNamara, B. Mitra,
T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Ti-
wary, and T. Wang. 2018. MS MARCO: A human
generated MAchine Reading COmprehension dataset.
arXiv:1611.09268v3.

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. 2003. Efficient query evaluation using a
two-level retrieval process. In Proc. CIKM, pages
426–434.

N. Cohen, A. Portnoy, B. Fetahu, and A. Ingber. 2022.
SDR: efficient neural re-ranking using succinct doc-
ument representation. In Proc. ACL, pages 6624–
6637.

Z. Dai and J. Callan. 2019. Context-aware sen-
tence/passage term importance estimation for first
stage retrieval. arXiv:1910.10687.

C. M. Daoud, E. S. de Moura, A. L. Carvalho, A. S.
da Silva, D. Fernandes, and C. Rossi. 2016. Fast top-
k preserving query processing using two-tier indexes.
Inf. Proc. & Man., 52(5):855–872.

C. M. Daoud, E. S. de Moura, D. Fernandes, A. S.
da Silva, C. Rossi, and A. Carvalho. 2017. Waves: A
fast multi-tier top-k query processing algorithm. Inf.
Retr., 20(3):292–316.

L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano,
S. Pupyrev, and A. Shalita. 2016. Compressing
graphs and indexes with recursive graph bisection. In
Proc. KDD, pages 1535–1544.

S. Ding and T. Suel. 2011. Faster top-k document re-
trieval using block-max indexes. In Proc. SIGIR,
pages 993–1002.

T. Formal, C. Lassance, B. Piwowarski, and S. Clin-
chant. 2021a. SPLADE v2: Sparse lexical
and expansion model for information retrieval.
arXiv:2109.10086.

https://doi.org/10.1145/383952.383957
https://doi.org/10.1145/383952.383957
https://arxiv.org/abs/2109.00062v2
https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.1145/956863.956944
https://doi.org/10.1145/956863.956944
https://aclanthology.org/2022.acl-long.457
https://aclanthology.org/2022.acl-long.457
http://arxiv.org/abs/1910.10687
http://arxiv.org/abs/1910.10687
http://arxiv.org/abs/1910.10687
https://doi.org/10.1016/j.ipm.2016.03.005
https://doi.org/10.1016/j.ipm.2016.03.005
https://doi.org/10.1007/s10791-017-9298-6
https://doi.org/10.1007/s10791-017-9298-6
https://doi.org/10.1145/2939672.2939862
https://doi.org/10.1145/2939672.2939862
https://doi.org/10.1145/2009916.2010048
https://doi.org/10.1145/2009916.2010048
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086

T. Formal, B. Piwowarski, and S. Clinchant. 2021b.
SPLADE: Sparse lexical and expansion model for
first stage ranking. In Proc. SIGIR, pages 2288–2292.

L. Gao, Z. Dai, and J. Callan. 2021. COIL: Revisit
exact lexical match in information retrieval with con-
textualized inverted list. In Proc. NAACL, pages
3030–3042.

G. Izacard, F. Petroni, L. Hosseini, N. De Cao, S. Riedel,
and E. Grave. 2020. A memory efficient baseline for
open domain question answering. arXiv:2012.15156.

A. Kane and F. W. Tompa. 2018. Split-lists and initial
thresholds for WAND-based search. In Proc. SIGIR,
pages 877–880.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu,
S. Edunov, D. Chen, and W. Yih. 2020. Dense pas-
sage retrieval for open-domain question answering.
In Proc. EMNLP, pages 6769–6781.

O. Khattab and M. Zaharia. 2020. ColBERT: Efficient
and effective passage search via contextualized late
interaction over BERT. In Proc. SIGIR, pages 39–48.

D. Lemire and L. Boytsov. 2015. Decoding billions of
integers per second through vectorization. Soft. Prac.
& Exp., 41(1):1–29.

J. Lin and X. Ma. 2021. A few brief notes on DeepIm-
pact, COIL, and a conceptual framework for informa-
tion retrieval techniques. arXiv:2106.14807.

J. Lin, X. Ma, S.-C. Lin, J.-H. Yang, R. Pradeep, and
R. Nogueira. 2021. Pyserini: A Python toolkit for re-
producible information retrieval research with sparse
and dense representations. In Proc. SIGIR, pages
2356–2362.

J. Lin, J. Mackenzie, C. Kamphuis, C. Macdon-
ald, A. Mallia, M. Siedlaczek, A. Trotman, and
A. de Vries. 2020. Supporting interoperability be-
tween open-source search engines with the common
index file format. In Proc. SIGIR, pages 2149–2152.

X. Ma, R. Pradeep, R. Nogueira, and J. Lin. 2022. Doc-
ument expansions and learned sparse lexical represen-
tations for MSMARCO V1 and V2. In Proc. SIGIR.

S. MacAvaney, A. Yates, A. Cohan, and N. Goharian.
2019. CEDR: Contextualized embeddings for docu-
ment ranking. In Proc. SIGIR, pages 1101–1104.

J. Mackenzie, M. Petri, and A. Moffat. 2022a. Anytime
ranking on document-ordered indexes. ACM Trans.
Inf. Sys., 40(1):13:1–13:32.

J. Mackenzie, M. Petri, and A. Moffat. 2022b. Tradeoff
options for bipartite graph partitioning. IEEE Trans.
Know. & Data Eng. To appear.

J. Mackenzie, A. Trotman, and J. Lin. 2021. Wacky
weights in learned sparse representations and
the revenge of score-at-a-time query evaluation.
arXiv:2110.11540.

A. Mallia, O. Khattab, N. Tonellotto, and T. Suel. 2021.
Learning passage impacts for inverted indexes. In
Proc. SIGIR, pages 1723–1727.

A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and
R. Venturini. 2017. Faster BlockMax WAND with
variable-sized blocks. In Proc. SIGIR, pages 625–
634.

A. Mallia and E. Porciani. 2019. Faster BlockMax
WAND with longer skipping. In Proc. ECIR, pages
771–778.

A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel.
2019. PISA: Performant indexes and search for
academia. In Proc. OSIRRC at SIGIR 2019, pages
50–56.

A. Mallia, M. Siedlaczek, M. Sun, and T. Suel. 2020. A
comparison of top-k threshold estimation techniques
for disjunctive query processing. In Proc. CIKM,
pages 2141–2144.

R. Nogueira and J. Lin. 2019. From doc2query to
docTTTTTquery. Unpublished report, David R.
Cheriton School of Computer Science, University
of Waterloo, Canada.

M. Petri, J. S. Culpepper, and A. Moffat. 2013. Explor-
ing the magic of WAND. In Proc. Aust. Doc. Comp.
Symp., pages 58–65.

M. Petri, A. Moffat, J. Mackenzie, J. S. Culpepper, and
D. Beck. 2019. Accelerated query processing via
similarity score prediction. In Proc. SIGIR, pages
485–494.

G. E. Pibiri and R. Venturini. 2021. Techniques for
inverted index compression. ACM Comp. Surv.,
53(6):125.1–125.36.

R. Pradeep, R. Nogueira, and J. Lin. 2021. The
expando-mono-duo design pattern for text rank-
ing with pretrained sequence-to-sequence models.
arXiv:2101.05667.

Y. Qu, Y. Ding, J. Liu, K. Liu, R. Ren, W. X. Zhao,
D. Dong, H. Wu, and H. Wang. 2021. RocketQA:
An optimized training approach to dense passage
retrieval for open-domain question answering. In
Proc. NAACL, pages 5835–5847.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu. 2020.
Exploring the limits of transfer learning with a uni-
fied text-to-text transformer. J. Mach. Learn. Res.,
21(140):1–67.

K. M. Risvik, T. Chilimbi, H. Tan, K. Kalyanaraman,
and C. Anderson. 2013. Maguro, a system for index-
ing and searching over very large text collections. In
Proc. WSDM, pages 727–736.

S. E. Robertson and H. Zaragoza. 2009. The probabilis-
tic relevance framework: BM25 and beyond. Found.
Trnd. Inf. Retr., 3:333–389.

https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://arxiv.org/abs/2012.15156
https://arxiv.org/abs/2012.15156
https://doi.org/10.1145/3209978.3210066
https://doi.org/10.1145/3209978.3210066
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1002/spe.2203
https://doi.org/10.1002/spe.2203
https://doi.org/10.48550/arXiv.2106.14807
https://doi.org/10.48550/arXiv.2106.14807
https://doi.org/10.48550/arXiv.2106.14807
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3397271.3401404
https://doi.org/10.1145/3397271.3401404
https://doi.org/10.1145/3397271.3401404
https://doi.org/10.1145/3477495.3531749
https://doi.org/10.1145/3477495.3531749
https://doi.org/10.1145/3477495.3531749
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3467890
https://doi.org/10.1145/3467890
https://arxiv.org/abs/2110.11540
https://arxiv.org/abs/2110.11540
https://arxiv.org/abs/2110.11540
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3077136.3080780
https://doi.org/10.1145/3077136.3080780
https://doi.org/10.1007/978-3-030-15712-8_52
https://doi.org/10.1007/978-3-030-15712-8_52
http://ceur-ws.org/Vol-2409/docker08.pdf
http://ceur-ws.org/Vol-2409/docker08.pdf
https://doi.org/10.1145/3340531.3412080
https://doi.org/10.1145/3340531.3412080
https://doi.org/10.1145/3340531.3412080
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-latest.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-latest.pdf
https://doi.org/10.1145/2537734.2537744
https://doi.org/10.1145/2537734.2537744
https://doi.org/10.1145/3331184.3331207
https://doi.org/10.1145/3331184.3331207
https://arxiv.org/abs/2101.05667
https://arxiv.org/abs/2101.05667
https://arxiv.org/abs/2101.05667
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/2433396.2433486
https://doi.org/10.1145/2433396.2433486
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019

T. Strohman and W. B. Croft. 2007. Efficient document
retrieval in main memory. In Proc. SIGIR, pages
175–182.

N. Tonellotto, C. Macdonald, and I. Ounis. 2018. Ef-
ficient query processing for scalable web search.
Found. Trnd. Inf. Retr., 12(4-5):319–500.

H. R. Turtle and J. Flood. 1995. Query evaluation:
Strategies and optimizations. Inf. Proc. & Man.,
31(6):831–850.

I. Yamada, A. Asai, and H. Hajishirzi. 2021. Efficient
passage retrieval with hashing for open-domain ques-
tion answering. In Proc. ACL, pages 979–986.

P. Yang, H. Fang, and J. Lin. 2018. Anserini: Repro-
ducible ranking baselines using lucene. J. Data Inf.
Qual., 10(4):1–20.

J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma.
2021. Jointly optimizing query encoder and product
quantization to improve retrieval performance. In
Proc. CIKM, pages 2487–2496.

J. Zhan, J. Mao, Y. Liu, J. Guo, M. Zhang, and S. Ma.
2022. Learning discrete representations via con-
strained clustering for effective and efficient dense
retrieval. In Proc. WSDM, pages 1328–1336.

L. Zhao. 2012. Modeling and solving term mismatch
for full-text retrieval. SIGIR Forum, 46(2):117–118.

S. Zhuang and G. Zuccon. 2021a. Fast passage re-
ranking with contextualized exact term matching and
efficient passage expansion. arXiv:2108.08513.

S. Zhuang and G. Zuccon. 2021b. TILDE: Term inde-
pendent likelihood moDEl for passage re-ranking. In
Proc. SIGIR, pages 1483–1492.

J. Zobel and A. Moffat. 2006. Inverted files for text
search engines. ACM Comp. Surv., 38(2):6:1–6:56.

A Experimental Setup

Hardware and Latency Measurement All of
our experiments are performed entirely in memory
on a Linux server with two Intel Xeon Gold 6144
CPUs (3.5GHz) and 512 GiB of memory. Latency
measurements are taken as the average of three
independent runs, where each run utilizes 16 pro-
cessing cores to process the query stream in parallel
in a one-thread-per-query manner.

Collections and Metrics The MSMARCO-v1 pas-
sage collection contains around 8.8 million pas-
sages and a total of 6,980 dev queries (Bajaj et al.,
2018). We measured effectiveness using the offi-
cial RR@10 metric (see Arabzadeh et al. (2021)
for additional discussion of this). The much larger
MSMARCO-v2 collection contains around 138.4 mil-
lion passages and 8,184 queries (after combining

both the dev and dev2 query sets), with effective-
ness measured using the official RR@100 metric.
In this second collection, the short text passages are
augmented with ancillary fields, specifically URLs,
titles, and headings, distributed as additional re-
sources (Ma et al., 2022). We also measured effec-
tiveness using the deeper Recall@1000 metric, to
validate the quality of our generated runs.

Indexing and Query Processing Indexes were
constructed using Anserini (Yang et al., 2018) and
converted into PISA indexes (Mallia et al., 2019)
via the common index file format (Lin et al., 2020),
allowing pre-built indexes to be used for improved
reproducibility (Ma et al., 2022). Before time or
space efficiency was measured, the indexes were
also reordered via the recursive graph bisection
algorithm to reduce their space consumption and
improve locality of access (Dhulipala et al., 2016;
Mackenzie et al., 2022b). All remaining experi-
mentation was conducted with the PISA engine.
Indexes were compressed with the SIMD-BP128
bitpacking codec (Lemire and Boytsov, 2015). The
VBMW algorithm used an average block size of
40±0.5 following the results of Mallia et al. (2017).

Ranking Models Our experiments made use of
two traditional ranking models:

• BM25 (Robertson and Zaragoza, 2009) is the
traditional BM25 lexical ranking model. The
exact formulation of the BM25 version we
employed is outlined in the PISA overview
(Mallia et al., 2019). We applied BM25 to
MSMARCO-v1 with k1 = 0.82 and b = 0.68
(Lin et al., 2021), and used the default param-
eters k1 = 0.9 and b = 0.4 for MSMARCO-v2.

• DocT5Query (Nogueira and Lin, 2019) applies
the BM25 ranking model over an expanded
version of the document corpus using the T5
sequence-to-sequence model (Raffel et al.,
2020). The same BM25 formulation and pa-
rameters are used as above; DocT5Query can
be thought of as a “neurally augmented” cor-
pus with a traditional ranking model.

To those we added two representative learned
sparse retrieval models:

• DeepImpact (Mallia et al., 2021) employs the
DocT5Query model to expand the corpus, and
then learns a per-term impact score for each
passage.

https://doi.org/10.1145/1277741.1277774
https://doi.org/10.1145/1277741.1277774
https://doi.org/10.1561/1500000057
https://doi.org/10.1561/1500000057
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.18653/v1/2021.acl-short.123
https://doi.org/10.18653/v1/2021.acl-short.123
https://doi.org/10.18653/v1/2021.acl-short.123
https://doi.org/10.1145/3239571
https://doi.org/10.1145/3239571
https://doi.org/10.1145/3459637.3482358
https://doi.org/10.1145/3459637.3482358
https://doi.org/10.1145/3488560.3498443
https://doi.org/10.1145/3488560.3498443
https://doi.org/10.1145/3488560.3498443
https://doi.org/10.1145/2422256.2422277
https://doi.org/10.1145/2422256.2422277
https://arxiv.org/abs/2108.08513v2
https://arxiv.org/abs/2108.08513v2
https://arxiv.org/abs/2108.08513v2
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/1132956.1132959
https://doi.org/10.1145/1132956.1132959

Method BM25 DocT5Query DeepImpact uniCOIL

k = 10 1000 k = 10 1000 k = 10 1000 k = 10 1000

MaxScore baseline 1.7 5.5 0.8 3.7 8.1 18.8 13.8 27.5
+ postings clipping 1.5 5.0 0.8 3.4 1.6 5.9 5.8 15.7

WAND baseline 2.3 7.4 1.3 7.0 14.9 34.0 23.3 56.5
+ postings clipping 1.7 5.6 1.0 5.5 2.7 10.8 8.1 27.5

VBMW baseline 2.0 7.3 1.3 7.0 4.2 12.2 11.5 28.5
+ postings clipping 2.4 7.4 1.3 6.7 3.3 9.7 13.6 27.2

× Speedup on best bl. 1.13 1.10 1.00 1.09 2.63 2.10 1.98 1.75

Table 5: Query processing times, all in average milliseconds per query, for the MSMARCO-v1 collection,
four retrieval models, and three dynamic pruning approaches, with the same structure and interpretation
as Table 4. The fastest time in each column is highlighted in blue, and the best of the three baseline
approaches in each column is shown in black. The speedups in the last row are the ratio between the black
and blue values in that column.

• uniCOIL (Lin and Ma, 2021) employs TILDE
(Zhuang and Zuccon, 2021b,a) document ex-
pansion, and learns per-term weights accord-
ing to a simplified (1-dimensional) COIL
model (Gao et al., 2021). Unlike DeepImpact,
uniCOIL also applies term weighting at query-
time, transforming bag-of-words queries into
weighted queries (and resulting in weighted
bag-of-words ranking; see Section 2).

The learned sparse models work with pre-quantized
scores, and so we also pre-computed and quan-
tized the BM25 and DocT5Query indexes into in-
teger impact scores in the range [0, 255] using
uniform quantization (Anh et al., 2001). All ex-
perimentation then involved computing document
scores as (weighted) sums of impacts. Note also
that DocT5Query, DeepImpact, and uniCOIL were all
fine-tuned on the MSMARCO-v1 training data; those
same models are then applied in a zero-shot manner
to MSMARCO-v2.

Setting Hyperparameters In order to decide
the split points for use in our experimentation,
we ran a preliminary experiment where we tried
splits of 1/p for p ∈ {8, 16, 32, 64, 128, 256} us-
ing the DeepImpact ranker and the MSMARCO-v1
dev queries. While all split values resulted in
large efficiency improvement, p = 64 was the best
choice. We then fixed p = 64 for all remaining
collections and experiments, and did not further
tune this value.

Reproducibility Our list splitting, clipping, and
priming contributions were all implemented in-
side the C++ PISA framework; this modified ver-
sion of PISA is available at https://github.com/
jmmackenzie/postings-clipping. Scripts for
downloading and pre-processing data, computing
split points, building indexes, and running the ex-
periments are also available in that repository to
facilitate reproducibility. Our experimentation is
all based on widely-available datasets (Bajaj et al.,
2018; Ma et al., 2022).

B Additional Measurements and Results

Query Speed Table 5 provides a set of timings
for the MSMARCO-v1 collection, in the same for-
mat as was employed in Table 4. A similar pattern
of behavior arises, demonstrating that our findings
apply to both the smaller MSMARCO-v1 and the
large MSMARCO-v2 collections. Unsurprisingly, the
observed speedup ratios for MSMARCO-v1 are typi-
cally less than those measured for MSMARCO-v2.

Effectiveness Table 6 presents effectiveness
scores of the four retrieval models, as measured
within our experimental framework. While the em-
phasis in this paper is on efficiency rather than
effectiveness, it is interesting to note the strong im-
provements that the neural augmented DocT5Query
method and the two learned sparse methods ob-
tain relative to the standard BM25 approach. Those
substantial gains arise because of a combination of
document-level term expansion, and the non-linear
context-based relationships that are uncovered be-

https://github.com/jmmackenzie/postings-clipping
https://github.com/jmmackenzie/postings-clipping

Model RR@d Rec.@1000

MSMARCO-v1 (d = 10)
BM25 0.187 0.858
DocT5Query 0.267 0.945
DeepImpact 0.327 0.948
uniCOIL 0.350 0.965

MSMARCO-v2 (d = 100)
BM25 0.086 0.696
DocT5Query 0.110 0.762
DeepImpact 0.132 0.736
uniCOIL 0.153 0.772

Table 6: Effectiveness of the different models on
both collections, using the official metrics associ-
ated with each, and runs of length k = 1000.

tween term frequency and term impact.
Our implementations achieve similar effective-

ness scores to those previously reported for these
three recent techniques – see, for example, Macken-
zie et al. (2021) and Ma et al. (2022).

Idealized Initial Thresholds Threshold estima-
tion is a technique that improves the efficiency of
query processing (Mallia et al., 2020; Petri et al.,
2019). Like priming, it enables better skipping
over unimportant documents during index traversal
by providing an initial minimum threshold score a
document needs to obtain to be considered during
ranking; unlike priming, however, various unsafe
alternatives can be used for predicting initial thresh-
olds. Table 7 demonstrates the potential speedup if
the initial heap threshold for each query could (in
an omniscient manner) be set at exactly the final
score of the k th most similar document; that is, if
the priming process could be clairvoyant. The sub-
stantial difference in execution times achievable,
up to 2.1× relative to the clipping runs shown in
Table 4, indicates that more accurate initial thresh-
old prediction mechanisms are a promising direc-
tion for further accelerating learned sparse retrieval
mechanisms.

Method k = 10 1000

MaxScore baseline 828.0 1170.4
+ postings splitting 50.6 108.2
+ oracle thresholds 35.4 66.8

WAND baseline 1972.9 2592.7
+ postings splitting 166.2 449.0
+ oracle thresholds 77.7 244.4

VBMW baseline 488.2 719.2
+ postings splitting 167.8 293.3
+ oracle thresholds 149.5 188.5

Table 7: Demonstrating the potential of accurate
threshold estimation on the MSMARCO-v2 collec-
tion and the DeepImpact model, assuming clairvoy-
ant pre-knowledge for each query. If the final heap
threshold could be predicted accurately, further
speedups are possible.

