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Abstract

Experiments often result in the need to compare an observation
against a reference, where observation and reference are selections
made from some specified domain. The goal is to determine how
close the observation is to the ideal result represented by the ref-
erence, so that, all other things being equal, systems that achieve
outputs closer to the ideal reference can be preferred for deploy-
ment. Both observation and reference might be sets of items, or
might be ordered sequences (rankings) of items. There are thus
four possible combinations between sets and rankings. Three of
those possibilities are already familiar to IR researchers, and have
received detailed exploration. Here we consider the fourth combi-
nation, that of comparing an observation set relative to a reference
ranking. We introduce a new measurement that we call rank-biased
recall to cover this scenario, and demonstrate its usefulness with
a case study from multi-phase ranking. We also present a new
top-weighted “ranking compared to ranking” measurement, and
show that it represents a complementary assessment to the pre-
vious rank-biased overlap mechanism, and possesses distinctive
characteristics.
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1 Introduction

Measurement is pervasive across all fields of science, often seeking
to assess the quality of the results generated by some system when
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compared to what an ideal answer would be. That is, we compare
an observation against a “perfect” (or “gold”) reference, and compute
a numeric score that measures the quality, or usefulness, of the
system that generated the observation.

In many such measurement scenarios each of observation and
reference are selections of items from some common domain. For
example, an information retrieval (IR) system processes a query
to generate a ranking of suggested documents. That answer list is
next compared against knowledge of document relevance, and an
effectiveness score computed; then we select (amongst alternative
systems) the one with the highest score and say that it is the “best”
system. In this measurement instance the observation is a ranking,
an ordered sequence of documents; and the reference is a set, the
known relevant documents.

A key observation that we make is that observation and reference
can each be either an unordered set or an ordered ranking. This
means that there are a total of four measurement scenarios that must
be allowed for: set against set, set against ranking, ranking against
set, and ranking against ranking. These four options are illustrated
in Figure 1, with the notation “X | Y” meaning “an observation (of
type) X is being assessed in the context of a reference (of type) Y.

Our project sits in this framework. We start by considering in
detail the four possibilities that can arise when an observation B is
to be compared to a reference R, noting that all four combinations
arise in IR system evaluations. We then add:

o A new measurement technique addressing the “set | ranking” pair-
ing, showing its relevance to IR via experiments on multi-stage
retrieval systems (Section 3); and

e A new measurement technique addressing the “ranking | ranking”
pairing, showing that it has properties that make it distinctive
from previous top-weighted correlation coefficients (Section 4).

Bookending those two elements, Section 2 introduces the mea-
surement taxonomy that we propose; and Section 5 concludes the
presentation and offers suggestions for possible future work.

2 Background

This section reviews the ways that observations B (sets or ordered
lists) have been compared to references R (sets or ordered lists).

“Set | Set” Measurement. Figure 1(a) is applicable if the observa-
tion (denoted B throughout) is a set; and a score is to be computed
indicating how closely it approximates a reference that is also a set
(denoted R). Boolean retrieval from an IR system, measured relative
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observation reference observation reference
(a) “set | set” (b) “ranking | set”
observation reference observation reference

(c) “set | ranking” (d) “ranking | ranking”
Figure 1: Four measurements scenarios that arise if the observa-
tions derived from some system are to be measured relative to a
reference output. Circles are sets and arrows are rankings; and X | Y
means “observation X is to be evaluated relative to reference Y.

to a set of known relevant documents, is a classic instance of this
“set | set” paradigm, with all elements in each of B and R having
equal precedence. A standard response is to calculate precision via:

|B|
Prec(B | R) = |71| Z(Bi €R), (1)
im1

where B; is the ith item from B, and the expression “B; € R” is
evaluated in a C-integer framework, and yields 0 if B; ¢ R, and
yields 1 if B; € R. Precision measures “what fraction of B is of
interest”; complementing it is:

IR|
Recall(B | R) = % (R €B), )
i=1

which is a measurement of “what fraction of R has been found”. In
particular, Prec(B | R) and Recall(B | R) both provide a score for
the observation B, given the context established by the reference R.
Our choice of notation allows an interesting symmetry to emerge:

Recall(B | R) = Prec(R | B). 3)

We will return to this duality in Section 3. Note that there is no
requirement that |B| = |R|, and the circles in the Venn diagram in
Figure 1(a) could have been drawn of different sizes.

“Ranking | Set” Measurement. Figure 1(b) illustrates another
common IR evaluation situation, that of “ranking | set”. Now the
observations form an ordered ranking, with B; prioritized over By,
and so on. Rankings arise from search services that incorporate
a numeric similarity computation, and are presented as “top-k”
output orderings, but understanding that each depth-k observation
B is a prefix of a ranking that eventually includes every document
in the collection.

In Figure 1(b) the reference R is still an unordered set of binary (or
binarized) relevance judgments. With B a ranking rather than a set,
the use of Prec() or Recall() is still possible if some fixed cutoff point
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k is used to form a prefix set from B. But “set | set” approaches do not
reward systems that successfully place the relevant items near the
top of the ranking, and a wide range of top-weighted measurements
have evolved over the years. These include reciprocal rank (RR),
which considers a prefix of B down to the first element that is
also in R; average precision (AP) [3]; and normalized cumulative
discounted gain (NDCG) [9].

In this work we focus on another “ranking | set” measurement,
rank-biased precision [21], defined (for our purposes here) as:

|B|

RBP(B | R) = % D (¢,i (Bi € R)) , (4)
i=1

with |B| arbitrarily large, and with B; always deemed to be “more
visible” to the user than is B;,1. Rank-biased precision reflects the
aggregate experience of a population of users who consume the
search results by always inspecting the first document, and then
proceeding from one to the next with conditional continuation
probability ¢ [21]. The convergence of the geometric sequence
when ¢ < 1 means that RBP can be computed even if |B| is infinite,
and that scores over monotonically longer prefixes converge to a
limiting value [21]. Moffat et al. [22] consider a range of related
mechanisms that are based on alternative user browsing models.

“Ranking | Ranking” Measurement. Figure 1(d) shows a third
measurement scenario, when both B and R are rankings. One well-
known approach is to use Kendall’s 7, which calculates a score
between —1 and +1 based on the fraction of times that B and R
agree on the relative ordering of pairs of objects.

Webber et al. [30] consider “ranking | ranking” assessment in
detail. They note that Kendall’s 7 has two potential drawbacks: first,
it requires that B and R be permutations of each other (and hence
also be of the same finite length); and second, it is not top-weighted.
In particular, if B and R differ by a single swapped pair of adjacent
elements, 7 assigns the same score regardless of whether the swap
occurs at the head of the two lists or at the tail.

Webber et al. go on to suggest an alternative computation they
name rank-biased overlap (RBO) which addresses both of these con-
cerns. Like RBP, RBO is controlled by a persistence parameter ¢.
What gets computed is an expectation of the overlap fraction ob-
served by users who step down the two lists in tandem, continuing
from depth i to depth i + 1 with conditional probability ¢. Define
Bj.i and Ry _; to be the first i elements of B and R respectively, and
with By ; = By || when i > |B| and Ry ; = Ry_jg| when i > |R|.
Then:

i
ng “|B1..i N Ry il (5)

RBO(B | R) = 1-¢ Z
=
Note that RBO(B | R) = RBO(R | B), and also that there is no
requirement that B and R be permutations of each other or even
of the same length. Webber et al. go on to consider a number of
other somewhat technical issues, including noting that if prefixes of
length i have an overlap of size v, then prefixes of length i + 1 must
have overlaps in the range v to v + 2. These considerations allow
lower and upper bounds to be computed for the infinite sum beyond
depth min(|B|, |R|), thereby constraining the range of RBO scores
that can emerge when B and R are finite prefixes of the infinite
rankings assumed by Equation 5.
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Figure 2: Assessing the quality of the first phase ranker in a multi-
phase retrieval system. The top-k’ list delivered to the second phase
is a set B, whereas the final output is a top-k ranking R.

Other authors have also considered top-weighted correlation
scores, notably Yilmaz et al. [31], who introduce a mechanism called
Tap that is derived from Kendall’s 7 by considering disordered pairs,
but biasing the pairs selected according to their positions in B.
Webber et al. [30] provide further analysis of the 7,p mechanism;
one notable issue is that scores are not convergent as the rank-
ings are extended, and nor is it symmetric. Other related work
comes from Tan and Clarke [27] (see also Moffat [20]), who con-
sider “ranking | ranking” measurement in terms of the maximum
effectiveness difference (MED) that could be observed if both B
and R were to be measured relative to a third set G of “gold” labels,
where G might contain relevance judgments or might be empty.

3 Rank-Biased Recall

Now consider the “set|ranking” measurement scenario of Fig-
ure 1(c), an option that has had almost no attention in the literature.

An IR Application. Figure 2 explains why IR practitioners need
to be interested in “set | ranking” measurement. Suppose that a
retrieval system has multiple phases. The first is an efficient mech-
anism that determines a set of kK’ > k elements that are passed
to the less-efficient second (final) phase ranker [29]. That second
phase ranker is an accurate but high-resource system that com-
pletely re-scores those k’ documents, so as to identify and then
present a final top-k subset. The question then is: how should first
phase rankers be compared, when their role is to deliver a set of
documents through to the second phase?

A similar area in which “set | ranking” evaluation is needed is
shard-based or federated selective IR, where a decision is made as
to which subset of documents shards is to be processed, and then
the union of the retrieved documents from those selected shards
becomes the set B for measurement purposes [10, 11, 25].1

Early Stage Assessment Is Not “Ranking | Ranking”. If the
first phase employs a numeric similarity computation, then the
observation B is a prefix of a ranking. It might thus be tempting
to apply a “ranking | ranking” mechanism, comparing that |B| = k’
ranking to the top-k ranking created by the second phase; or to
a k’-item ranking generated by re-scoring all k¥ documents; or
to a collection-wide ranking in which every document is scored
using the second phase. For example, Mackenzie et al. [16] and
MacAvaney and Tonellotto [14] measure quality using RBO; and

!Noting that in some of these papers “RBR” stands for “Relevance Based Ranking”. We
will shortly overload the acronym, and ask the reader’s understanding and forgiveness.
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Clarke et al. [4] and Mackenzie et al. [15] make use of Tan and
Clarke [27]’s MED.

But such approaches give different scores to each permutation
of B, creating a fake distinction between observations that become
identical once re-scoring is applied.

Early Stage Assessment Is Not “Set | Set”. Another approach
that has been used to measure the quality of first phase rankers is
to form a “true” top-k by applying the second-phase to the entire
collection, and then taking the first k items from that global ranking
be a set R. It is then natural to compute Recall(B | R), the fraction
of R that is present in the observation set B. This measurement
approach is in use in a wide range of current experimental pipelines.

Different first stage rankers are compared by employing each
to generate a top-k’ set B for each query. A recall score is then
computed for each query and each first stage system; and averaged
over a large number of queries (possible because no relevance
judgments are required) to obtain per-system average recall scores.
Those scores are then compared to determine the best system.

But use of “set | set” measurement for early stage assessment has
a clear drawback: not having the first element in R also present
in B is likely to be more detrimental to perceived system quality
than is omitting the k th. Yet recall treats both omissions equally.
Similarly, replacing a missed document (in B) by the k+1 th element
in R should be less disruptive to the score than including as a
substitute the 99 th or 999 th document. That is, positions in R do
have a bearing on the score, and do so even beyond rank k; whereas
positions in B do not affect the score.

“Set | Ranking” Measurement. To address this clear gap we pro-
pose an approach that we call rank-biased recall (RBR):

LI
RBR(B | R) = - D (¢>’ “(Ri € B)) : (6)
i=1

Once the parameter ¢ has been chosen, each item in the refer-
ence ranking R is assigned a geometric weight, with R; having
the highest weight, being 1 — ¢. The RBR score is then the sum
of the weights of the elements that appear in B, a dual of the pre-
vious RBP computation. Table 1 gives a simple example, using
a set B of size kK’ = 5, a reference sequence R of length 10, and
¢ = 0.6. Having R; (document DO07) present in B provides more
than half of the final RBR score, which is calculated as (working
from left to right in R, to reflect the ordering implied by Equation 6)
0.400 + 0.240 + 0.052 + 0.019 = 0.711. Note how R; = D06 also
contributes to the RBR score, even though it is outside the top k = 5
in R. There is partial credit given for including in B something that
was “nearly” in R’s top-5, exactly as required.

The example in Table 1 includes an item By = D23 not present in
R. From a pessimistic point of view it needs to be assumed that D23
(and in general, all items in B \ R) are located at the tail of any full
ranking prefixed by R. That makes their ranks very large (shown
as oo in the table), and their RBR contributions only marginally
greater than zero. A more optimistic view is provided shortly.

As k’ increases, additional items are included in B. As they are,
the RBR score increases towards a limiting value of one, just as
normal set-based recall also increases towards one as items are
added to B. On the other hand, if |B| = k’ is regarded as being
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R =(D07,D04,D11,D12,D10, D15, D06,D22,D19,D28,...)

i 1 2 3 4 5
B; (e in Eqn. 8) D06 D23 D10 D07 D04
rank(R, e) 7 0o 5 1 2

contrib., ¢ = 0.6 0.019 0.000 0.052 0.400 0.240

Table 1: Computation of RBR. Reference R is an ordered list of
arbitrary length (here, 10) of which the top-k are desired (here, 5),
and the observation B is a set of size k’ (here, 5); with (typically)
|R| > k’ > k. The RBR score of 0.711 is the sum of the contributions.

fixed, then RBR cannot be greater that 1 — gbk,, which is achieved
when B = R;_j-, corresponding to both the perfect selection of the
required set of size k, plus also perfect selection of near-misses out
to position k” in R.

One pleasing consequence of the definition of RBR, and an el-
egant symmetry that mirrors the duality between precision and
recall that was noted earlier (Equation 3), is that

RBR(B | R) = RBP(R | B). @)

Note also that while Equation 6 indicates a summation over the
elements in R, it is equally valid to sum over the elements in B,
provided a mapping through to positions in R is available. In par-
ticular, if e is an element from the domain in question (for example
a document number), and if rank(R, e) is the rank position of e in
R (and is o if e ¢ R), then we may equally write:

1 —
RBR(B | R) = T¢ D grekRe) ®)
e€B
This version reflects the way that the example computation has
been laid out in Table 1.

Residuals and Incomplete Information. In RBP there is a resid-
ual associated with the unseen tail of B, arising from two possible
sources of inaccuracy [21]. The first is that the ranking B is a finite
prefix of the full ranking, and if it is of length k, then a fraction ¢k
of the probability distribution cannot be allocated. This is the tail
residual. The second source of RBP inaccuracy comes from the in-
completeness of R. Relevance judgments are rarely comprehensive,
and B might include “unjudged” documents, as well as documents
known to be in R (that is, have been judged relevant) and others
known to not be in R (that is, judged non-relevant). In RBP the
score ranges associated with both of these issues can be amalga-
mated together to provide a single residual in connection with the
measured RBP value, providing an upper bound on how much the
score might increase if either B was extended, or if R was made
more comprehensive with regard to the universe of documents
[21].

Rank-biased recall scores can also be subject to inaccuracy, but of
a single variety. There is no ambiguity with regard to membership
of the set B, since it is the observation. But R is typically represented
by a finite prefix of a much longer sequence. That means that there
may be elements in B for which rank(R, B;) is unknown, because
B; does not appear in the visible part of R. In the discussion above
those ranks were taken to be oo, so that the corresponding RBR
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terms were zero, a pessimistic accounting. On the other hand, the
most optimistic thing that can happen is that each missing element
appears in R just after the known prefix. If that happens, and there
are b = |B \ R| items in set B for which the rank in R is unknown,
then the maximum possible increase in the RBR score is given by:

residual = ﬂ Zb: ¢>|R|+i . 9)
=

In the example in Table 1 we have b = 1 and |R| = 10, and hence
have a residual of 0.002. That is, if R were to be extended beyond
the 10 items shown in the table to eventually include D23, the final
RBR score would lie between 0.711 and 0.711 + 0.002 = 0.713.

Choosing Parameters. Rank-biased precision is motivated by
a user browsing model, and the choice of ¢ can be regarded as
“selecting a type of user”, either impatient (small ¢) or patient (values
of ¢ closer to one) [21]. Similarly, in RBO a value for ¢ is in part
determined by the corresponding user model [30].

In the case of RBR it is less obvious how to select a suitable
value for ¢. The ¢ = 0.6 discount employed in Table 1 is relatively
aggressive, and suited primarily when k’ and |R| are small. For
more typical values of k’ in the range (say) 10 to 100, values of ¢ in
the range 0.8 to perhaps 0.98 are more appropriate.

When selecting a value for ¢, we suggest the following consider-
ation: if B1 = R;_ is the best possible k-subset of R and obtains the
highest score amongst all possible k-subsets, what fraction of that
score should be awarded to B2 = Ry,q ox? In other words, what
relative score penalty should occur if the ideal k-subset is replaced
by the next group of k consecutive elements from R?

Suppose that in response to that question we decide we would
like RBR(B2,R) = f - RBR(B1,R) for some constant 0 < f < 1.
That implies:

fe RBR(Ris1.2¢ | R) _ $(1—9) Z?{k“ ¢ =¢F. (10
RBR(R; r | R) d(1-¢) X, ¢

That is, ¢¥ can be interpreted as being the discount factor that
applies if the best set of k items is replaced by the next-best non-
overlapping set of k items. Conversely, if we have a value in mind
for that discount factor, then ¢ = (‘/f should be chosen.

As an example, Table 2 supposes a reference list R of 10 items, and
measures six different sets of observations (labeled B1 to B6, with
memberships indicated by the “1” entries in the table), using two
different values of ¢. The first value of ¢ is chosen to givea k =3
discount of f = 0.5, a relationship that can be verified by comparing
the scores for Bl and B4. The second column of RBR scores uses a
steeper discount, taking f = 0.3; again, compare the scores of Bl
and B4. Note that it is possible for larger (but non-optimal) sets to
yield higher RBR scores than smaller optimal sets — compare B1 and
B6 for ¢ = 0.794. But if ¢ is decreased to apply a steeper discount
the RBR score relativities alter, and B6 no longer out-scores B1.
Note also that the properties of the geometric distribution require
that if the score for a k-shifted “next-best k-subset” is to be f times
the score of the “best k-subset”, then the “best k-subset” must get a
score of 1 — f, as shown by the two RBR scores associated with B1.

As further examples, if k = 10 and f = 0.1, then ¢ = 0.794 should
again be used; and k = 100 and f = 0.05 implies ¢ = 0.970.
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R Ry Ry Rs Ry Rs R R7 R RoRyp ¢ =0.794 ¢ =0.669

Bt 111 - - - - - - - 0.500 0.700
B2 -111- - - - - - 0.397 0.469
B3 - -111- - - - - 0.315 0.314
B4 - - -111 - - - - 0.250 0.210
B5 -1 -111 - - - - 0.414 0.431
B6 11 - -1 -1 - -1 0.529 0.657

Table 2: A range of RBR scores, using either ¢ = ¥0.5 = 0.794 or
¢ = V0.3 ~ 0.669. In these examples all of the residuals are zero.

The flexibility to take into account elements from R outside the
top-k and outside the top-k’ is why we have chosen in Equations 6
and 8 to normalize by (1 — ¢)/¢ only, rather than also fold in a
bound that might be imposed by |B|, which is finite. The definitions
we have provided then allow observations B of different sizes to be
directly compared, since the normalization is independent of |B|.

Finally in connection with Table 2, observe that if the six ob-
servations Bl to B6 were assessed via Recall@3, they would be
assigned scores of 1.000, 0.666, 0.333, 0.000, 0.333, and 0.666 respec-
tively; equating B3 and B5, and also equating B2 and B6. The RBR
mechanism provides more nuanced scores that better differentiate
between these pairs of observations, and at the same time provides
the ability to directly control the extent of the top-weightedness,
to cater for different measurement situations.

Ties. In “set | ranking” measurement the observation is a set, and
all elements in it are regarded as being equally valuable. On the
other hand, Equation 6 assigns decreasing weights to the elements
in R, based on their ordinal position. But what if R is derived from a
scoring process that permits ties? What if we have, for example, R’ =
({D07,D04, D11}, {D12},{D10, D15}, {D06}, {D22, D19, D28},...)?
How then should an RBR score be calculated in Table 1?

Our proposal is that tied elements be apportioned equal shares of
their aggregate weight. For example, that would mean that each of
D07, D04, and D11 have a weight in R’ of (0.400+0.240+0.144) /3 =
0.261; and that at ranks 5 and 6 items D10 and D15 similarly share
a weight of (0.052 + 0.031)/2 = 0.041. In turn, that would give the
observation B in Table 1 a score of 0.019 + 0.000 + 0.041 + 0.261 +
0.261 = 0.583, with the non-appearance of D11 and D15 in B being
penalized more relative to R’ than to R, because of their implicit
promotion in the ranking of R’ compared to the original R.

Experiment. To demonstrate the difference between use of RBR
and Recall when evaluating first-phase retrieval systems, we carried
out the following experiment. Starting with the 6,980 dev queries
of the MSMARCO-v1 [1] passage collection, we applied a suite of
traditional and learned sparse retrieval systems, following the setup
of Mackenzie et al. [17]. The systems included a plain BM25 ranker
[26]; a BM25 ranker with DocT5Query expansions [13, 23]; and four
learned sparse systems including Deeplmpact [2, 19], UniCOIL [8,
12] with DocT5Query expansions, UniCOIL with TILDE expansions
[32], and SPLADEv2 [6, 7].

An index for each system was built with PISA [18] using the any-
time extension [16] to allow for approximate retrieval. Each system
was permitted to visit as many as ¢ = {1,2,3,4,5, 10, 20, 50, 100}
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RBR, Recall(B | R10)=0.8, |B| =20, ¢ =0.8
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Figure 3: Rank-biased recall scores and ranges for a filtered set of
observations B in which Recall(B | R10) = 0.8 (top) and Recall(B |
R10) = 0.9 (bottom). Each observation B contains 20 documents,
with ¢ = 0.8 in both panes.

document clusters, with ¢ = 100 providing “safe” results, and lower
values of ¢ giving faster — albeit more approximate — results lists.

A reference ranking for each query was formed by pooling the
sets of documents returned at depth 100 by the six ¢ = 100 “safe”
runs, and then re-scoring and re-ranking the pools using Mono-T5
[24] via the lIm-rankers tool [33]. That is, we took Mono-T5 as
being the second phase ranker, and for each query prepared a “full”
reference ranking R containing between 100 and 600 documents.
For the purposes of the experiment we then took k = 10 and formed
a top-10 list for each query, R10 = R;_1¢.

We next executed each of the 6 X 9 candidate first-phase systems
on each query, generating observations of size kK’ = |B| = 20.
Each of those sets B was then measured using Recall(B | R10) to
obtain a recall-based top-10 overlap score that could take on one
of eleven different values 0.0, 0.1, to 1.0. As already noted, this is a
common way of assessing the quality of a first-phase system. We
then filtered the observations B, discarding all for which Recall(B |
R10) # 0.8. That is, we formed a collection of observations of
size |B| = 20 that all had exactly 8 elements in common with
the corresponding “correct” top-10 list, and were thus judged by
Recall@10 to all be of identical merit. That collection contained
26,043 observations. Finally, RBR with a parameter ¢ = 0.8 was
applied to each observation, using both the corresponding R10
reference ranking and also the extended ranking. That value of ¢
was selected in accordance with the commentary above.
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The top pane in Figure 3 shows the RBR scores obtained, with
the observations ordered by increasing RBR(B | R10) base score.
For example, the leftmost group of points is observations B in which
the first two items in the ranking R10 were missed (there were 151);
and the final group of points is observations in which the ninth
and tenth items of R10 had been missed and replaced by others not
in R10 (2,938 observations). In total, there are 45 groups, covering
all possible combinations of two missed items. Residuals were also
calculated relative to R10 (Equation 9). Because of the filtering these
are constant, since there were always two items in B not appearing
in R10 that at best could appear in positions Rj1 and Rjy. The “base
plus residual” lines in the plot show the maximum extent to which
items not visible in the prefix R10 might affect the RBR score.

Within each of the 45 groups the observations were further
sorted by their RBR(B | R) “full” scores, noting that when |R| > 100
the residuals are effectively zero for ¢ = 0.8. Finally, the top dashed
line in the plot shows the best RBR score that can be attained by
any observation of size |B| = 20 for which Recall(B | R10) = 0.8.

By construction, all of the runs plotted in the top pane of Figure 3
have the same Recall@10 scores. However their RBR base scores
vary considerably, reflecting the relative locations in R10 at which
the two items have been missed. Our claim is that losing items
one and two from R should be more detrimental than losing items
nine and ten, and this is exactly the behavior visible across the
“base score” line. Moreover, we further posit that even if it is the
same two items that have been missed (say, items one and two),
the assessment should be affected by the relative locations in R
hosting the two replacement items. Substituting two missing items
by the eleventh and twelfth ones from R should be less damaging
to perceived quality than replacing them by items from positions
(say) 234 and 345. The RBR(B | R) “full score” lines in Figure 3
demonstrate exactly the required effect, with a wide range of RBR
full scores evident, even within each group of equal RBR base scores.
Those full scores generated from RBR(B | R) must always lie in
the range from base and base-plus-residual established by R10, but
even within that range add important detail to the evaluation.

The bottom pane in Figure 3 shows the same experiment, but
now with Recall(B | R10) = 0.9, and thus ten groups of RBR
base scores. Again RBR evaluated using the full ranking yields
myriad fine-grained scores, whereas recall says “nothing to see here,
these 21,736 observations are all the same”. That is, both panes in
Figure 3, derived from data generated by a plausible experimental
context, show a level of gradated measurement that is simply not
possible when using Recall. At risk of being simplistic, using recall
for a “set | ranking” measurement is a bit like opening a nut with a
sledgehammer.

Experimental Design. Given the developments we have described,
how then should experiments on a two-stage system in which the
first phase system is the “variable” be carried out? We suggest the
following sequence of steps. First, suitable queries and documents
should be obtained; and the desired second-stage ranker should be
identified. As well, the length k of the required outputs that are to
be generated by the overall combined system should be determined.

The second-stage ranker should then be executed in exhaustive
“brute force” mode, to obtain for each query a reference ranking
R of length substantially greater than k. For example, if k = 100,
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RB = RBA, ¢ =
Observation B 0.¢ ¢

06 0.7 08 06 0.7 08
1,2,3,4,5,6,7,8,9,10 1.00 1.00 0.99 0.97 0.99 0.97 0.89

[ |

[2,1,4,3,6,5,8,7,10,9] 0.78 0.54 0.62 0.70 0.96 0.96 0.89
[5,4,3,2,1,10,9,8,7,6] 0.11 0.23 0.33 0.46 0.78 0.86 0.85
[6,7,8,9,10,1,2,3,4,5] —0.11 0.04 0.10 0.22 0.51 0.68 0.77
[10,9,8,7,6,5,4,3,2,1] —1.00 0.04 0.10 0.22 0.40 0.60 0.73

Table 3: A “ranking | ranking” measurement for five permutations
of R=[1...10].

then the reference rankings should be perhaps 1000 long, so that
the RBR residuals are small. Next, all possible first-stage rankers
(comprising different systems and/or different parameter settings)
need to be executed, to generate observations sets B of a range of
sizes k’. Scores for RBR(B | R) for each first-phase ranker, each
k’, and one or more suitable values of ¢ should next be calculated.
As well, the execution time for each combination of k’ and ranker
should be captured.

With that data collected, the RBR scores can then be scatter-
plotted against combined ranking time on the horizontal axis, one
plot per choice of ¢. In these plots the combined ranking time is the
measured cost of the first-phase system for that system and k’, plus
the second-phase cost of re-ranking a set of k” items. In each such
plot the points associated with each first-phase system describe a
curve, parameterized by the sweep of k” values. The Pareto frontier
of that set of lines then represents the subset of first-phase systems
that are interesting for at least some combination of effectiveness
and efficiency. First-phase systems that do not contribute to the
Pareto frontier can be discarded.

4 Rank-Biased Alignment

In combination, RBP (Equation 4) and RBR (Equation 6) also suggest
a new ‘ranking | ranking” measurement technique in the spirit of
Figure 1(d). This section describes that mechanism, which we call
rank-biased alignment, or RBA, and compares it to the previous
RBO technique.

Rank-Biased Overlap. As was noted in Section 2, RBO calculates
a weighted sum of overlap ratios across ranking depths.

Suppose that B and R are permutations, and have the same ele-
ments and are the same length. Table 3 lists five possible observa-
tions B, in the context of R = [1,2,3,4,5,6,7,8,9,10], the identity
permutation. The five permutations are scored by Kendall’s z, by
RBO with three different values of ¢, and by the rank-biased align-
ment measurement, which is described shortly. In the first row of
the table, in which B and R are fully aligned, all of the measures
provide high scores. At the bottom of the table B is the reverse
of R, and the measures provide their smallest values. The three
in-between sequences B have varying degrees of alignment with R,
and are assigned correspondingly in-between scores.

However the second-to last row raises questions. In that row B is
a piecewise rearrangement of R, with the top-5 items in order at the
bottom, and the bottom-5 items swapped to the top (Figure 4(a)).
Because Kendall’s 7 is not top-weighted, it assigns a score close to
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Figure 4: The last two rows of Table 3: (a) piecewise aligned; and
(b) reversed. Fully aligned would run up the main diagonal.

zero. In contrast RBO assesses the same sequence as being highly
disordered. Indeed, it gives it the same scores as for the reversed
sequence in the last table row (Figure 4(b)).

It is not incorrect for RBO to assign the same scores (it occurs
for all values of ¢) to both of the permutations shown in Figure 4,
since they have matching overlap counts at every depth. However,
it could also be argued that the arrangement in Figure 4(a) should
score more highly in a “ranking | ranking” sense than the one in
Figure 4(b), because there is a higher degree of alignment between
BandR.

Another issue that arises with RBO is computation of the residual
- the extent to which the score might change if further elements of
B and R become available to the measurement process. In particular,
overlaps that first occur at depth d propagate to all depths greater
than d. That means that an RBO score continues to increase even
if all unseen tail elements in B are assumed to be disjoint from R.
Webber et al. [30] provide formulae that allow the final RBO score
range to be computed under different assumptions, but there is
ambiguity in terms of what practitioners should do. In contrast, in
RBP and RBR the computations at each depth are independent of
any other depths, allowing simple closed formulations for score
uncertainty; see, for example, Equation 9.

Combining RBP and RBR. In RBP a geometric weight is assigned
to each item in B. In RBR the roles are switched, and a geometric
weight is associated with each item in R. Given that context, our
suggestion for “ranking | ranking” measurement is straightforward
to motivate — we suggest that the geometric weight given to each
item be influenced by its rank in both of B and R. Hence:

RBA(B | R) _ 1- ¢ . Z ¢(rank(B,e)+mnk(R,e))/2 ) (11)
eeBNR

If B and R are fully aligned, the exponents of ¢ in the summation will
be [1,2,3,...], and the RBA value will in the limit approach 1.0. On
the other hand, elements that are misaligned between B and R give
rise to larger-than-minimal exponents, and thus reduce the RBA
score. Elements that occur in B but not in R, or vice-versa, do not
contribute at all, and further reduce the score. In the worst case, if B
and R are disjoint over the prefixes provided, then RBA(B | R) = 0,
matching the score that would be assigned by RBO.
Another corner case arises when B is the reverse of R:

RBA(reverse(R), R) = % -|R| - ¢URHD/2 (12)
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observation reference Item avg_rank contrib.
1 1: D07 D04 2.5 0.176
2: - 2:D04 Do6 o] 0.000
. o D07 1.0 0.300
5. 5: D22 D10 6.5 0.042
6: 6:D15 D11 5.0 0.072
7 7:D06 D12 3.0 0.147
8: © 8:D10
& e D15 6.0 0.050
D18 o0 0.000
D19 9.0 0.017
22: D06 ?2:D23 D22 00 0.000
D23 o0 0.000

Figure 5: Example of RBA computation with ¢ = 0.7. The RBA
base score of 0.805 is the sum of the contributions.

This is the smallest permutation score, and corresponds to the
bottom row in Table 3. As desired, RBA gives a higher score to the
piecewise-swapped permutation considered in the second last row
of Table 3, and measures that sequence as having some modest
amount of alignment. Note also that

RBA(B | R) = RBA(R | B), (13)

and that the computation is symmetric.

Figure 5 gives an example RBA calculation for two non-conjoint
rankings. The base score is the sum of the contributions listed,
calculated from the average rank of the shared items, with four
items not matched between the two rankings.

Residuals and Incomplete Information. Equation 11 gives a
base RBA score. If no further common elements are encountered as
B and R are extended, then no further increments will occur. That
is, the score given by Equation 11 is a tight lower bound; again, a
property that we regard as desirable.

It is also straightforward to compute a tight upper bound on
an RBA score, given finite prefixes B and R (of possibly different
lengths) of arbitrarily long rankings. In this case, elements of B
that do not appear in the current prefix R will give rise to maximal
contributions if they are assumed to occur in R in positions |R| + 1
through to |B U R| in the order that they appear in B. Similarly,
elements of R that do not appear in the current prefix B will give
rise to maximal contributions if they occur in B in positions |B| + 1
through to |B U R| in the order that they appear in R. Then, from
position |B U R| + 1 onward, B and R should be assumed to be
perfectly aligned. This is the tail residual associated with RBP, and
contributes a further ¢|BUR | to the residual.

Algorithm 1 gives details, returning a base score that is the tight
lower bound, and calculating the extra amount that arises if B and
R are both extended to their union in a maximally-aligned manner.
That upper RBA score bound is also sharp, and is attained if B and
R are optimally completed out to an arbitrary length.

For example, in Figure 5 the residual based on the most advanta-
geous positioning of the four red items is (1 — ¢) (7> + ¢° + ¢7 +
$°) = 0.097. The tail residual contributes another ¢! = 0.020.

Choosing Parameters. In the case in which the two rankings are
permutations of each other, Equation 12 can be used to guide the
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Algorithm 1 Computing RBA(B, R), for ordered observation list B
and ordered reference list R. Lower and upper values are computed,
assuming that B and R are finite prefixes of arbitrary rankings.

base, extra < 0,0
2. // first process the elements that appear in both B and R
for e € BN R, in any order do
4 avg_rank « (rank(B, e) + rank(R, e))/2
base < base + (1 — ¢) - p@e-rank=1
6: // now process the elements that appear only in B
t«— |R|+1
8: for e € B\ R, in order from the head of B do
avg_rank « (rank(B,e) +1)/2

10: extra « extra+ (1 — ) - p@erank=1
te—t+1
12: // and now process the elements that appear only in R
t <« |B|+1

14: for e € R\ B, in order from the head of R do
avg_rank « (t + rank(R,e))/2

16: extra « extra+ (1— @) - p@s-renk=1
te—t+1

18: return (base, base + extra + ¢|BUR|>

Min/max RBA values for permutations

L0~ ri=10 SSSSSIIIITTESIIICN
— RI=25 S~ SN
0.8- SS \
—— |R|=100 ~ \
y
< 06"
o
o
0.4-
0.2-
0.0-
05 0.6 0.7 0.8 0.9 1.0

RBA parameter ¢

Figure 6: Range of RBA scores from minimum (reversed sequences,
solid line of each pair) to maximum (fully aligned sequences, dashed
lines) for permutations of three different lengths, as a function of ¢.

choice of ¢. For a given k = |R| = | B|, the practitioner first chooses
- within the available range — the score that a reverse permutation
should be assigned. That score then determines the ¢ that will attain
it. Figure 6 plots minimum (Equation 12) and maximum (given by
1- ¢k ) RBA scores as a function of ¢ for three different values of
k, and shows how the “reversed permutation” scores grow as ¢
increases. Figure 6 also shows that for each input length there is a
value of ¢ above which the range of scores rapidly shrinks, and the
use of RBA becomes unhelpful.

When B and R are not permutations and may instead be disjoint,
the upper bounds shown in Figure 6 remain, but the lower bounds
are zero. In this case, ¢ can be selected by considering a similar
question as was posed in connection with RBR: if RBA(B | R) = x
what fraction 0 < f < 1 of x score should be preserved if 2k
completely different elements are introduced, k at the front of B
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RBO vs. RBA (|B| = |R| = 25, ¢ = 0.7, 25000 pts)
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Figure 7: Distribution of RBA scores against RBO scores (top); and
cumulative distributions for three correlations (bottom) for ran-
domly generated high-correlation permutations. The relationships
between the three sets of values are captured in Table 4.

and k at the front of R? Once this question is answered, the choice
of ¢ = {‘/f is appropriate, as was discussed earlier.

Behavior on Random Permutations. We carried out the fol-
lowing experiment. Starting with identity permutations B = R =
[1..25], two randomly selected elements in B were swapped, rep-
resenting a small perturbation relative to R. We then measured
Kendall’s 7, RBO using ¢ = 0.7, and RBA also using ¢ = 0.7. The
same “perform a random swap” perturbation process was carried
out a total of 24 more times, with B (in expectation) steadily diverg-
ing from R, and approaching random by the end of the sequence.
That entire pattern, starting at B = R and doing 25 random swaps
one after the other, was carried out a total of 1000 times, to obtain
25,000 correlation scores, over a set of permutations that exhibits a
bias towards being positively correlated.

Figure 7 shows the outcome, with the top pane plotting RBA
scores (vertical axis) against RBO scores (horizontal axis) on a per-
permutation basis (25,000 points plotted). The clumping of RBO
values that is visible in that plot was a common outcome in this
experiment, and is apparent, to some extent or another, across the
spectrum of ¢ and k. Note the paucity of RBO scores in the vicinity
of 0.5 — clearly, some parts of the RBO range are less likely to arise
(at least, from this permutation generation regime). The lack of
smoothness is also evident in the cumulative RBO distribution in
the bottom pane of Figure 7. In contrast, the r and RBA cumulative
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Methods ¢=07 ¢=08 ¢=09
7 (7, RBO) 0536 0589  0.659
75 (7, RBA) 0.680 0.774 0.863

7, (RBO, RBA) 0775 0739  0.718

Table 4: Kendall’s 7, correlations for the data points generated for
Figure 7 (left column) and for two other values of ¢.

Obs. B Ref. R Example measurements
set set precision (Eqn. 1); recall (Eqn. 2)
ranking set rank-biased precision (Eqn. 4);
plus many others
ranking ranking rank-biased overlap (Eqn. 5);
rank-biased alignment (Eqn. 11)
set ranking rank-biased recall (Eqn. 6, Eqn. 8)

Table 5: Rank-biased approaches to measuring the quality of sets
and rankings, to be interpreted in the context of Figure 1.

distributions are smoother, suggesting that the lack of smoothness
is with RBO rather than the randomization process.

Table 4 takes the same data as was plotted in Figure 7 and com-
putes pairwise correlation coefficients using Kendall’s 7, method,
which takes into account the possibility of ordering ties. Each num-
ber in the table is a 73, score computed from a total of 25,000 paired
scores on a per-permutation basis. Unsurprisingly, the three ap-
proaches to measuring correlation - 7, RBO, and RBA - give scores
that are themselves correlated (here on top-biased permutations,
as described above, but also in general as well), with RBA seem-
ingly located between 7 and RBO in terms of the degree to which
it is top-weighted. Also note that as ¢ is increased and the depth
discount is weakened, both RBO (top row) and RBA (middle row)
place increasing weight further down the rankings (which here are
permutations) and hence shift closer to 7 in their assessments.

From this experiment we can conclude that RBA has similar
properties to RBO, but is (on a same-¢ basis, at least) slightly less
top-weighted. The spread of points in the scatter plot in Figure 7
also indicates that RBA is assessing top-weightedness differently
to RBO, and hence that it is a complementary technique. There
might also be some circumstances in which the smoother scoring
distribution associated with RBA becomes an advantage.

5 Conclusion and Future Work

Table 5 summarizes the context and results of this paper, and links
them back to Figure 1. We have added rank-biased recall to the
toolkit of IR measurements, and in doing so have completed the
fourth assessment combination between sets and rankings. Cate-
gorizing those four possible ways of measuring quality is also one
of the key contributions of this work; and has led to a structure
that has, in no small part, prompted the development of RBR. We
hope that the reader shares our pleasure in the symmetry of what
we have achieved in completing the roster of set against ranking
quality assessment techniques.
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As well, we have described some concerns with rank-biased
overlap, and shown that the proposed alignment technique RBA —
which itself came about as a blend of RBP and RBR - avoids them.

There remain areas where we do not yet have full understanding.

User Models. The previous rank-based precision and rank-biased
overlap measurements for “ranking | set” and “ranking | ranking”
assessments can both be described in terms of user models [21, 30],
and hence can be argued as measuring the expected experience
across a community of probabilistic users. The situation in regard
to RBR and RBA is more complex, since neither of them connects
the parameter ¢ with observable user behaviors. This challenge
arises with many recall-based measurements, and occurs because
in IR situations the user cannot be required to know how many
relevant documents exist in the collection, and their perceptions
of quality should ideally be based only on that which they have
seen [21, 22], rather than that which they have not. For RBR we
can imagine a population of users stepping though R, progressing
from one item to the next with probability ¢, and after each step,
assessing how much of B has been encountered. But whether that
is a plausible model is arguable. In particular, the “consumer” of
the output from a first-phase ranker is another ranker, with no
user involved. Maybe that provides an exemption from the need to
describe a believable user model.

For RBA the situation is equally complex — our proposition here
is that RBA measures an interesting quantity, but relating that
conjecture through to behaviors that might be observable across a
population of users remains an interesting challenge.

Nor have we addressed the various social, contextual, and com-
mercial aspects of IR measurement considered by Thomas et al.
[28] in their recent survey.

Future Work. There are many areas of our proposal that will
benefit from further exploration. Corsi and Urbano [5] have devel-
oped detailed methodologies for handling ties in RBO, and their
work might help do the same for RBA. More generally, it might
be interesting to investigate other weightings for the items in R in
conjunction with RBR, just as many alternative weightings have
been developed within the “ranking | set” framework established
by RBP. It might also be possible to carry our detailed experimenta-
tion — beyond the scope of what we have presented here - to more
precisely characterize the differences between RBO and RBA, so
that researchers and practitioners can be offered better guidance as
to when each might be preferred.
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Software. Implementations of the tools described in this paper are
available at https://github.com/rankbiased/rbstar.
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