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Abstract
Inverted indexes are the backbone of most large-scale information
retrieval systems. Although conceptually simple, high-performance
inverted indexes require a deep understanding of low-level system
optimizations, compression techniques, and traversal strategies.
With the widespread adoption of in-memory search engines, the
rise of learned sparse retrieval (LSR), and the increasing complexity
of ranking pipelines, the design space for efficient indexing and
retrieval systems has expanded significantly.

This tutorial addresses a critical knowledge gap between textbook-
style explanations and advanced techniques required for efficient
and optimized retrieval. It aims to equip researchers and practi-
tioners with a comprehensive understanding of how modern in-
memory search systems are designed, built, and optimized for high-
performance retrieval across large-scale document collections.

CCS Concepts
• Information systems→ Information retrieval; Search en-
gine architectures and scalability; Retrieval efficiency.
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1 Motivation
Efficient indexing and retrieval remain foundational to information
retrieval (IR) systems at all scales, from academic testbeds to large-
scale commercial search engines. At the heart of these systems lies
the inverted index, a decades-old data structure that continues to
evolve in response to new retrieval paradigms and performance
demands. While many students and early-career researchers are
introduced to inverted indexes through textbooks or simplified
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implementations, the gap between these resources and the require-
ments of high-performance, in-memory search engines remains
substantial. Furthermore, the complexity of these highly optimized
solutions presents a significant barrier to entry for those interested
in understanding and working in the efficiency space.

Recent advances in retrieval – particularly the rise of learned
sparse retrieval (LSR) models [1, 4, 9, 14, 19, 26, 36], hybrid search
pipelines [5, 7, 11, 15], and retrieval-augmented generation (RAG)
applications [10] – have renewed interest in efficient sparse retrieval
techniques that can be tightly integrated with modern machine
learning and cascade ranking workflows. In particular, the use of
traditional sparse indexes to serve model-generated representations
has led to new challenges in indexing, scoring, and top-𝑘 retrieval,
motivating the development of specialized pruning strategies such
as BM25-guided traversal [8, 20, 28], Block-max Pruning [25], and
list decomposition [16] among many others.

Despite these developments, many researchers and practition-
ers face a steep learning curve when experimenting with efficient
retrieval infrastructures, making it difficult to reproduce results,
run scalable experiments, or explore new optimization techniques.
To address this gap, this tutorial provides both theoretical founda-
tions and practical guidance for building high-performance sparse
retrieval systems. Using the open-source Performant Indexes and
Search for Academia (PISA) engine [22] and its Python bindings
via PyTerrier [13], we demonstrate how classical indexing tech-
niques are implemented in practice and how they can be extended
to support emerging applications such as LSR and RAG.

The tutorial is particularly relevant to the SIGIR community,
where interest in efficient retrieval, reproducible experimentation,
and integration with neural models has grown rapidly in recent
years. By equipping attendees with both the conceptual background
and the practical skills required to build and experiment with state-
of-the-art sparse retrieval systems, this tutorial aims to lower the
barrier to entry and foster new research directions at the intersec-
tion of classical IR and modern machine learning. The tutorial will
also improve the visibility of ongoing work and open directions for
efficient inverted index-based search systems.

2 Objectives
We organize our tutorial around a set of Intended Learning Out-
comes (ILOs) that attendees will be able to achieve by the end of
the tutorial. These outcomes are designed to accommodate a broad
audience – from those new to information retrieval, to more ex-
perienced researchers – by combining foundational theory with
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hands-on practical skills via the PISA engine. Furthermore, we aim
to provide valuable content to both end-users (those who want to
effectively apply inverted indexes in their research) and tinkerers
(those who want to dig into the implementations and contribute to
new research in this domain). The ILOs for the tutorial are:

• ILO1: Theoretical Understanding of Inverted Indexes
Attendees will develop a solid understanding of how inverted
indexes are structured and used in information retrieval sys-
tems. Theywill learn how core components – such as posting
lists, lexicons, and skip lists – are implemented and orga-
nized in memory, how they are compressed, and how these
design choices impact retrieval efficiency and scalability.

• ILO2: Fast Top-𝑘 Retrieval with Dynamic Pruning
Attendees will gain insight into dynamic pruning-based re-
trieval techniques (such asMaxScore [33] andBMW[3, 6, 21])
that accelerate top-𝑘 search. They will understand the prin-
ciples behind these algorithms, including any assumptions,
sensitivities to different indexing or parameter choices, and
the underlying trade-offs involved with different pruning
strategies. Attendees will also gain insights into the cur-
rent state-of-the-art methods for accelerating inverted index-
based algorithms, including threshold estimation [17, 24, 27],
advanced skipping or pruning methods [23, 29, 30, 34], and
anytime retrieval strategies [18].

• ILO3: Current Trends and Research Directions
Attendees will understand how traditional inverted index-
based retrieval fits into modern IR systems. They will learn
how emerging methods – such as learned sparse retrieval –
influence traversal strategies, including problems caused by
learned sparse data distributions. Then, we will introduce
ongoing research to remedy these issues including BM25-
guided traversal, list decomposition, and anytime retrieval,
as well as emerging methods tailored to sparse neural rep-
resentations such as Block-Max Pruning (BMP) [25] and
Seismic [2].

• ILO4: Building and Running Experiments with PISA
Attendees will gain practical experience using the PISA en-
gine to build indexes, run retrieval experiments, and evaluate
performance. They’ll learn how to apply different scoring
functions and retrieval algorithms to analyze efficiency and
effectiveness trade-offs. We plan to offer two levels of access;
(1) the PyTerrier-PISA python bindings for users who wish to
interact with PISA via the PyTerrier interface; and (2) directly
via PISA’s command line tool interface.

• ILO5: Integration of PISA in Modern Applications
Attendees will be able to use PISA as a sparse retrieval
backend in applied research contexts, such as incorporating
keyword search into retrieval-augmented generation (RAG)
pipelines.

3 Relevance
This tutorial is designed for both newcomers to information re-
trieval and experienced researchers who want to better understand
efficient retrieval methods. Although there has been a significant

focus on semantic search methods over the last decade, lexical re-
trieval is still a core component of many search systems at various
scales, and the efficient deployment of lexical search systems is
a key requirement for the community. Our tutorial complements
recent tutorials [31, 35] and surveys [32] by focusing specifically
on the efficient design and implementation of such retrieval sys-
tems, from traditional models and simple indexes to state-of-the-art
techniques. To ensure relevance with modern IR trends and ongo-
ing work, we specifically focus on how traditional inverted index
methods can be integrated into modern applications, and dedicate
a section of the tutorial to ongoing work and emerging trends.

4 Format and Schedule
The tutorial will be presented as a series of modules, interleaving
the theoretical aspects with practical, hands-on activities. We also
intend on providing a more advanced “post tutorial” extension task
for those who wish to continue to develop their knowledge, but our
main goal is to reduce the barrier to entry for attendees. To this end,
no “pre-work” is required, and we expect to have both runnable
notebooks available to support the python-oriented sections, as
well as a Docker image with PISA pre-installed for the command
line work. Thus, participants are only expected to have Docker
installed and a functioning Python environment. This will facilitate
rapid set-up, and these resources will be made available before the
workshopwith support available from the team prior to, during, and
after the tutorial. Note that all timelines listed below are indicative,
and are intended to have some level of flexibility to adapt to the
audience needs or interests.

Session 1: Indexing and Retrieval [75 min.]
The first session will be focused on exploring the fundamentals
of the inverted index. We will begin with a discussion on where
the PISA family (including Python bindings) fits into the wider
tool landscape, and compare it against other common tools that
serve a similar purpose. We will then motivate the need for inverted
indexes, followed by a series of brief, visual tutorials on in-memory
indexing. These will include details on the representation of in-
verted indexes, and practical examples of indexing common IR
collections. Next, we will move from indexing to retrieval, again
using visual tutorials to outline how exhaustive retrieval operates
over inverted indexes. Following this, we will move to efficient
dynamic pruning algorithms (using the more simple WAND or
MaxScore algorithms as exemplars). We will complete this session
with a small empirical comparison of top-𝑘 retrieval algorithms
using PISA on the indexed collection.

An indicative timeline is as follows:
• Introduction and motivation [5-10 minutes]
• Inverted indexing and retrieval fundamentals [20 minutes]
• Fast and compact in-memory index representations [20 min-
utes]

• From exhaustive to fast top-𝑘 retrieval [20 minutes]

Practical Aspects. The first session will aim at familiarizing atten-
dees with the notebook/Docker image, and to run some basic index-
ing and querying. We expect this part to rely on a small and freely
available collection such as a subset of an open-source Wikipedia
dump. We will start with building a basic index, and running simple
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conjunctive and disjunctive queries. Then, we will build additional
structures required to support (fast) ranking, and explore exhaus-
tive document-at-a-time top-𝑘 retrieval. Finally, we will move to
deploying dynamic pruning algorithms like WAND and MaxScore.

Break [15 minutes]
Aligned with the conference coffee break.

Session II: Learned Sparse Retrieval [60 min.]
The second session will focus on the challenges and opportunities
of combining traditional inverted index structures with modern
learned sparse retrieval (LSR) techniques. We begin with a high-
level overview of LSR, covering their motivation, model architec-
tures, and how they differ from statistical rankers like BM25. We
then discuss how LSR changes the structure and usage patterns of
inverted indexes – including new characteristics of posting lists,
term distributions, and score distributions that arise from model-
generated representations. Next, we explore how traditional index-
ing and retrieval algorithms can be adapted to efficiently support
LSR, with a particular focus on pruning strategies that help mitigate
long and noisy LSR postings.

An indicative timeline is as follows:
• From Statistical to Learned Models [10 minutes]
• LSR: A trouble-maker for Inverted Indexes [20 minutes]
• Accelerating Inverted Indexes in the context of LSR [30 min-
utes]

Practical Aspects. This session will include a practical walk-
through, showing how PISA can be used to index LSR-generated
output (e.g., in JSON or CIFF [12]) format and how these indexes
can be queried using the same high-performance retrieval infras-
tructure. These experiments will also demonstrate the slowdowns
caused by LSR in practice. The session concludes with a demon-
stration of how PISA can be integrated into Python-based research
pipelines via PyTerrier, enabling its use as a first-stage retriever in
modern workflows, including hybrid retrieval and, if time permits,
retrieval-augmented generation (RAG) systems.

Session III: Alternatives & New Directions [30
min.]
Our final session will broaden the focus of the tutorial beyond
document-ordered inverted indexes with the intent of providing
useful pointers to alternative approaches being investigated by the
efficiency community. We will also outline some open problems and
ongoing work in the efficiency space. Example material includes:

• Impact-Ordered Indexes and Score-at-a-Time Retrieval en-
gines [10 minutes]

• Embedding-Based Retrieval and Hybrid Search [10 minutes]
• The future of the PISA engine [10 minutes]

5 Materials
Attendees will be provided with:

• Slides covering theoretical content and code walk-throughs,
including diagrams or animations to improve understanding;

• Access to a Docker image for PISA, and notebooks (Jupyter
or Colab) for the PyTerrier interface;

• Sample datasets and prebuilt indexes for experimentation;
and

• Links to relevant publications, code repositories, and further
readings.

We intend to provide some post-tutorial resources and guides
for those attendees interested in learning or engaging further. For
example, we plan to provide links to the PISA repository (and the
PyTerrier counterpart), detailed documentation, the PISA Slack
channel, and a guide on how to contribute further to the project.
We will also provide a set of references to recent and ongoing work,
and any further material we develop that was not covered during
the tutorial.

6 Conclusion
Efficient indexing and retrieval remain central challenges in the
design of high-performance information retrieval systems. This
tutorial bridges the gap between foundational concepts and cutting-
edge developments by offering both theoretical insights and hands-
on experience with state-of-the-art tools. It focuses on in-memory
inverted indexes and their role in both classical and modern re-
trieval pipelines — including learned sparse retrieval and retrieval-
augmented generation.

This tutorial is designed to support both newcomers to informa-
tion retrieval and experienced researchers interested in efficiency-
focused methods. By the end of the session, attendees will have
a strong understanding of core indexing and retrieval techniques,
along with practical experience that equips them to apply these
approaches in their own research and experimental workflows.
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