
On the Cost of Negation for Dynamic Pruning

Joel Mackenzie1, Craig Macdonald2, Falk Scholer1, and J. Shane Culpepper1

1 RMIT University, Melbourne, Australia
2 University of Glasgow, Glasgow, Scotland, UK

Abstract. Negated query terms allow documents containing such terms
to be filtered out of a search results list, supporting disambiguation. In
this work, the effect of negation on the efficiency of disjunctive, top-k
retrieval is examined. First, we show how negation can be integrated ef-
ficiently into two popular dynamic pruning algorithms. Then, we explore
the efficiency of our approach, and show that while often efficient, nega-
tion can negatively impact the dynamic pruning effectiveness for certain
queries.

Keywords: Dynamic Pruning · Query Semantics · Negation · Efficiency

1 Introduction

Modern Information Retrieval (IR) systems are extremely complex, often using
a multi-stage approach to support both efficient and effective retrieval. In order
to improve effectiveness, user queries can be rewritten into improved representa-
tions through query expansion, query reduction, named entity recognition, and
other advanced rewriting strategies [1, 2]. These strategies can make use of the
term negation operator [3], which allows the results to be filtered so that docu-
ments containing negated terms are not returned by the IR system. In particular,
this operator is useful for disambiguating query terms, allowing irrelevant results
to be filtered from the result list. Furthermore, while negation is not commonly
used directly by users of web search systems [4], many large scale search systems
still explicitly support the negation operator as an advanced search feature, in-
cluding Google,3 Bing,4 and Twitter [5], where users can manually negate query
terms if desired.

2 Dynamic Pruning Strategies

Dynamic pruning strategies are often used in large scale search systems to allow
efficient candidate generation, where typically hundreds or thousands of poten-
tially relevant documents are quickly identified for further consideration [6]. In
this work, we focus on two popular Document-at-a-Time (DaaT) dynamic prun-
ing strategies, namely Wand [7] and Bmw [8].

3 https://support.google.com/websearch?p=adv_operators (Accessed Oct. 2017)
4 https://msdn.microsoft.com/library/ff795633.aspx (Accessed Oct. 2017)

https://support.google.com/websearch?p=adv_operators
https://msdn.microsoft.com/library/ff795633.aspx

The Wand algorithm provides efficient traversal of document-ordered post-
ings lists by storing the upper-bound score that the ranking function can con-
tribute for each given term (Ut). Wand uses the score of the lowest scoring
document in the current result set as a threshold (θ). Then, the values of Ut are
used to estimate an upper-bound score that a document may achieve, and only
documents with an upper-bound score greater than θ are evaluated, allowing
redundant documents to be skipped.

Improving the Wand algorithm, Ding and Suel [8] proposed the Block-Max
Wand (Bmw) algorithm. Instead of just storing the Ut score, Bmw also stores
the maximum score for each block in each postings list (Ub,t). Query processing
is the same as Wand, but after a potential (pivot) document has been found,
the block scores are used to refine the upper-bound score, to ensure the potential
score of the pivot is still greater than θ. If not, the block max scores can be used
to induce additional skipping, resulting in faster retrieval. We refer the reader
to the work of Broder et al. [7], Ding and Suel [8], and Petri et al. [9] for more
information on the workings of these algorithms.

Integrating Negation. We now explain how negation can be efficiently sup-
ported in modern dynamic pruning algorithms. Firstly, the query parser is mod-
ified to recognise the term negation operator (-). Next, the query processing
framework is modified to maintain two sets of postings lists: those to be scored,
and those which are negated. Next, an efficient function called isNegated is
implemented, which, when given the set of negated postings and a document
identifier (DocID), returns true if the document contains a negated term, and
false otherwise. This function efficiently skips to a compressed block that may
contain the given document identifier, decompresses the block, and probes for
the candidate DocID. If found, the function returns true. Otherwise, the next
negated list is considered. This process is repeated for all negated lists which
have cursors before the pivot document. Note that, similar to Wand, postings
are sorted from current smallest to largest document identifier, as this allows
early exiting from the isNegated function.

For the Wand algorithm, processing proceeds as usual, except that once a
pivot document has been found, the pivot is checked for negated terms using
the isNegated function. If it does contain negated terms, we select a new pivot.
Otherwise, we proceed to score the document. We denote this algorithm as N-
Wand in our experiments and discussion. Figure 1 shows a pictorial example of
N-Wand pivoting and the isNegated function.

For the Bmw algorithm, we propose two versions to address negated query
terms. The first version will select a pivot document, and perform the refined
block-max check. If the block-max check passes, the document is then examined
for negated terms. We denote this version N-Bmwv1. In the second version, we
switch the order of the negation test and the block-max check. That is, we select
a pivot, and then ensure that it does not contain any negated terms. If the pivot
contains no negated terms, we then continue to the block-max check. Otherwise,
we select a new pivot. This algorithm is denoted as N-Bmwv2.

dynamic 2.4

pruning 4.5

12

37

dynamic 2.4

pruning 4.5

12

37

 -tree - 29 -tree - 37

Fig. 1: An example of N-Wand processing for the query “-tree dynamic pruning”
with a heap threshold of θ = 5.1. Left shows the pivot selection: document 37
is the next document that can potentially make the heap since 2.4 + 4.5 > θ.
Right shows the check negation function: the negated list is searched for the next
DocID ≥ 37. Since 37 was found in the negated list, a new pivot will be selected.

3 Experiments

Experimental Setup. Experiments are conducted on the standard TREC
ClueWeb09B collection, which contains 50 million web documents. We use a
custom implementation of the Wand and Bmw algorithms [10], modified as
discussed above, and the code is made available for reproducibility.5 All timings
are performed in-memory on an otherwise idle Red Hat Enterprise Linux Server
(v7.2) with two Intel Xeon E5-2690 v3 CPUs, and 256GB of RAM. All reported
timings use a single core only, and are the average of 3 runs. The query log
consists of 317 queries extracted from the Excite query logs from 1997, 1999
and 2001 [4]. We extracted all queries containing negated terms, removed illegal
characters, and then s-stemmed and stopped the queries. We also created a copy
of this query set that has the negated terms removed, which allows us to compare
the negated algorithms with the plain Wand and Bmw algorithms. For example,
consider the query “fish net -stocking”; the corresponding plain query would be
“fish net”. For each query, the top-k documents are ranked and retrieved using
a BM25 ranking model.

Comparing Negation and Plain Disjunction. For each algorithm, we re-
trieve the top k = {10, 100, 1,000, 10,000} documents. The resulting response
times are shown in Fig. 2. Firstly we note that, similar to the disjunctive algo-
rithms, the efficiency of processing queries with negated terms decreases as the
value of k increases, and the N-Bmw variants outperform N-Wand for all val-
ues of k. In addition, adding negated terms makes processing slower than plain
disjunctive processing, although the gap is quite small. This is not surprising,
as negation involves an additional check for every pivot document that is con-
sidered by Wand or Bmw. To further explore the overhead caused by negated
terms, we profile each of the algorithms (Table 1). Interestingly, we find that on
average, the negated algorithms score fewer postings than when processing the
corresponding plain query. Therefore, the cost of negation is not in the scoring
of postings, but rather, in the negation check and pivot selection aspects of the
algorithms.

5 http://github.com/JMMackenzie/DaaT-Negation

http://github.com/JMMackenzie/DaaT-Negation

1 × 10−1

1 × 10
0

1 × 10
1

1 × 10
2

1 × 10
3

10 100 1,000 10,000
k

T
im

e
[m

s]
Algorithm

BMW

Wand

N-BMWv1

N-BMWv2

N-Wand

Fig. 2: Comparing all Bmw and Wand algorithms across all queries for varying
values of k. The plain Bmw and Wand algorithms run each query by simply
ignoring the negated terms.

Further Exploration of Dynamic Pruning Power. Examining Table 1
further, it is clear that the algorithms that process negated terms have lower
thresholds than the corresponding plain algorithms. Since some documents will
not make the heap due to containing negated terms, the heap threshold does
not rise as quickly or as highly it would in a plain disjunctive setting. A lower
threshold means less pruning power, which results in more pivot documents being
considered, more negation checks, and less skipping across the DocID space. As
an example, we plot the value of the threshold, θ, each time a document is scored
for a single query, “silver city -new mexico”, and for the corresponding plain
disjunction, “silver city mexico” (Fig. 3). Clearly, the negation results in a lower
threshold, as documents that would usually make the top-k in the disjunctive
processing may contain negated terms. This explains why N-Bmwv2 outperforms
N-Bmwv1 for larger values of k; N-Bmwv2 performs less redundant block-max
checks than N-Bmwv1, especially as the density of negated terms in high scoring
documents increases. Similar observations were made by Petri et al. [9], where
the authors explored the impact of various ranking functions on the dynamic
pruning power of both Wand and Bmw.

4 Conclusion and Future Work

In this work, we presented an initial investigation on the impact that negation
has on modern dynamic pruning algorithms. We first show how to integrate
efficient negation into modern dynamic pruning strategies, namely Wand [7] and
Bmw [8], and then compare and contrast the efficiency of such extensions across
a log of around 300 real queries. Our results demonstrate that although negation

Algorithm
Postings
Processed

Unique
Pivots Final θ

Mean
Time

Median
Time

k = 10

Wand 271,533 611,013 18.32 63.63 23.62
N-Wand 226, 605 628,349 17.74 82.91 36.68
Bmw 18,958 222,032 18.32 28.73 10.03
N-Bmwv1 16,872 250,090 17.74 37.98 13.46
N-Bmwv2 16,873 254,634 17.74 40.03 15.33

k = 100

Wand 412,657 795,176 16.25 86.50 33.65
N-Wand 357,645 836,650 15.64 112.93 51.72
Bmw 51,279 351,743 16.25 42.59 17.93
N-Bmwv1 46,046 389,226 15.64 60.65 26.34
N-Bmwv2 46,050 396,606 15.64 62.91 29.80

k = 1,000

Wand 607,186 1,051,990 13.02 124.24 64.39
N-Wand 535,137 1,125,580 12.27 167.54 94.58
Bmw 159,800 571,003 13.02 77.51 39.60
N-Bmwv1 147,730 642,714 12.27 110.29 61.31
N-Bmwv2 147,742 650,942 12.27 106.74 60.70

k = 10,000

Wand 1,085,950 1,574,320 9.47 222.31 155.72
N-Wand 985,028 1,696,080 8.99 281.17 200.51
Bmw 577,460 1,073,130 9.47 172.92 130.10
N-Bmwv1 535,980 1,201,890 8.99 237.29 176.04
N-Bmwv2 535,995 1,209,400 8.99 220.96 157.04

Table 1: Average statistics for all algorithms across the 317 queries. Although
the negation algorithms process fewer postings on average (compared with their
respective plain algorithms), they select more unique pivot documents due to
reduced heap thresholds.

can be supported efficiently most of the time, occasionally queries can negatively
impact the effectiveness of dynamic pruning. Future work will compare the N-
Wand and N-Bmw approaches with similar extensions to the MaxScore [11,
12] algorithm and the recently proposed Variable-Bmw algorithms [13]. A more
comprehensive exploration of the role of negation in query substitutions [1] for
large scale search is a captivating problem that we leave for future work.

Acknowledgements

This work was supported by the Australian Research Council’s Discovery Projects
Scheme (DP170102231), an Australian Government Research Training Program
Scholarship, and a grant from the Mozilla Foundation.

10 100 1,000 10,000

0%

25%

50%

75%

100%

0% 25
%

50
%

75
%

10
0% 0% 25

%
50

%
75

%
10

0% 0% 25
%

50
%

75
%

10
0% 0% 25

%
50

%
75

%
10

0%

Postings Traversed

H
ea

p
Th

re
sh

ol
d

Query Type Plain Negation

Fig. 3: Comparing the heap threshold of the negated query to the heap threshold
of the plain query for the query pair “silver city -new mexico” and “silver city
mexico”. Clearly, by negating documents containing the term new, fewer high
scoring documents make it into the heap, leading to a reduced threshold, and
less ability for dynamic pruning to occur. As k increases, so too does the gap
between the plain and negated threshold.

References

1. R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. In
Proc. WWW, pages 387–396, 2006.

2. C. Macdonald, N. Tonellotto, and I. Ounis. Efficient & effective selective query
rewriting with efficiency predictions. In Proc. SIGIR, pages 495–504, 2017.

3. Y. Kim, J. Seo, and W. B. Croft. Automatic Boolean query suggestion for profes-
sional search. In Proc. SIGIR, pages 825–834, 2011.

4. Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko Saracevic.
Searching the web: The public and their queries. JASIST, 52(3):226–234, 2001.

5. M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. Earlybird: Real-
time search at twitter. In Proc. ICDE, pages 1360–1369, 2012.

6. C. Macdonald, R. L. T. Santos, and I. Ounis. The whens and hows of learning to
rank for web search. Information Retrieval, 16(5):584–628, 2013.

7. A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y. Zien. Efficient query
evaluation using a two-level retrieval process. In Proc. CIKM, pages 426–434, 2003.

8. S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes. In
Proc. SIGIR, pages 993–1002, 2016.

9. M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic of WAND. In Proc.
ADCS, pages 58–65, 2013.

10. M. Crane, J. S. Culpepper, J. Lin, J. Mackenzie, and A. Trotman. A comparison
of Document-at-a-Time and Score-at-a-Time query evaluation. In Proc. WSDM,
pages 201–210, 2017.

11. H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Inf. Proc.
& Man., 31(6):831–850, 1995.

12. T. Strohman, H. Turtle, and W. B. Croft. Optimization strategies for complex
queries. In Proc. SIGIR, pages 219–225, 2005.

13. A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. Faster
blockmax wand with variable-sized blocks. In Proc. SIGIR, pages 625–634, 2017.

	On the Cost of Negation for Dynamic Pruning

