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ABSTRACT
The use of offline effectiveness metrics is one of the cornerstones
of evaluation in information retrieval. Static resources that include
test collections and sets of topics, the corresponding relevance judg-
ments connecting them, and metrics that map document rankings
from a retrieval system to numeric scores have been used for mul-
tiple decades as an important way of comparing systems. The basis
behind this experimental structure is that the metric score for a
system can serve as a surrogate measurement for user satisfaction.

Here we introduce a user behavior framework that extends the
C/W/L family. The essence of the new framework – which we
call C/W/L/A – is that the user actions that are undertaken while
reading the ranking can be considered separately from the benefit
that each user will have derived as they exit the ranking. This split
structure allows the great majority of current effectiveness metrics
to be systematically categorized, and thus their relative properties
and relationships to be better understood; and at the same time
permits a wide range of novel combinations to be considered.

We then carry out experiments using relevance judgments, docu-
ment rankings, and user satisfaction data from two distinct sources,
comparing the patterns of metric scores generated, and showing
that those metrics vary quite markedly in terms of their ability to
predict user satisfaction.

CCS CONCEPTS
• Human-centered computing→ User models; • Information
systems→Taskmodels;Retrieval effectiveness;Presentation
of retrieval results.
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1 INTRODUCTION
The use of offline effectiveness metrics is one of the cornerstone ap-
proaches to evaluation in information retrieval [34], the other two
being laboratory-based user studies with relatively small numbers
of subjects [21], and large-scale in-situ observation of operational
systems with relatively large numbers of subjects, and the ability
to run A/B processing streams [19]. An offline evaluation makes
use of a set of static resources: one or more test collections and
corresponding topic sets (queries); sets of relevance judgments con-
necting the documents in each collection and the topics applicable
to it; and one or more effectiveness metrics, each of which takes a
document ranking (a search engine result page, or SERP) that has
been generated by a retrieval system and the corresponding rele-
vance judgments, and from them constructs a numeric score [18].

The offline experimental methodology has been used for more
than fifty years as an important way of comparing systems [11].
The basis behind it is the assumption that the metric score (or
scores, if more than one metric is applied) for a system can serve
as a surrogate measurement for the underlying attribute of SERP
usefulness as expressed via user satisfaction, the degree to which
the SERP addresses the information need that prompted the user’s
query and thus helps them carry out some task. Consideration of a
pool of representative topics then permits statistical inferences to
be drawn in regard to the relative performance of systems, allowing
the field to progress. Sanderson [34] provides an overview of offline
experimental evaluation, and the resources that it employs.

The C/W/L framework of Moffat et al. [26, 27] (itself motivated
in part by earlier work by Moffat and Zobel [25], Yilmaz et al. [42],
Wang et al. [39], and Carterette et al. [7]) describes a class of effec-
tiveness metrics – the C/W/L family – in terms of the aggregate
behavior of a pool of users as they examine each SERP generated
by the system. Each individual user is assumed to begin viewing
the SERP at the top-ranked item, and to proceed sequentially from
one item to the next, moving through the SERP until they discon-
tinue their perusal. They then issue a reformulated query, change
search mode (perhaps using a different service), or resume the task
that prompted their information need. While this sequential user
browsing model is only an approximation to true user behavior
within a search interface – see, for example, Thomas et al. [38] – it
nevertheless captures the essence of the users’ interactions with
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the ranked lists of documents that form the output from the core
retrieval system, before they are intermingled with elements from
other search verticals such as images, knowledge graph entries,
“did you mean” suggestions, and so on [12].

The key element of the C/W/L framework is that it formalizes
this user browsing model through the use of a conditional continua-
tion probability, denoted 𝐶 (𝑖), the probability that a user who has
examined the item at rank 𝑖 in the SERP will go on to also examine
the item at rank 𝑖 + 1. From𝐶 (𝑖) the fraction of user attention𝑊 (𝑖)
paid to each rank in the SERP can be calculated; and hence the ex-
pected aggregate per-user gain of utility derived from the SERP can
be computed as the sum of that user’s observed per-document gains
once the SERP’s corresponding relevance judgments are factored
in. Details of this approach are provided in Section 2.

Section 3 then introduces a user behavior framework that extends
the previous C/W/L approach. The new framework – which we call
C/W/L/A – adds an aggregation function 𝐴(𝑖) to the computation,
to represent the derived benefit that users receive when they exit
the SERP at rank 𝑖 and have thus viewed the first 𝑖 items in the
SERP. One obvious aggregation function is to sum the gain scores
of the documents through to depth 𝑖; that approach yields all of the
“pure C/W/L” metrics, as a proper subset of the C/W/L/A metrics.
But other aggregation rules are also possible, and via them the
new framework allows the great majority of current effectiveness
metrics to be systematically categorized, and thus for their relative
properties and relationships to be better understood.

Section 4 then uses the C/W/L/A framework to suggest new
evaluation options, and considers the properties and applicability
of those alternatives. We also carry out experiments using relevance
judgments, document rankings, and user satisfaction data from two
distinct sources including data derived from a large commercial
search service. That data allows us to compare the scores generated
from the very wide range of effectiveness metrics described by the
C/W/L/A frameworkwithwhole-of-SERP quality assessments; with
the results showing that a metric’s ability to predict self-reported
user-satisfaction and judge-assessed SERP quality values can vary
quite markedly.

2 BACKGROUND
A range of mechanisms have been suggested to categorize offline ef-
fectiveness metrics [6, 31, 43]. In this section we present the C/W/L
framework of Moffat et al. [26, 27], and provide examples showing
its use and limitations. We also show how the framework encap-
sulates many existing effectiveness metrics, but fails to adequately
describe other commonly used metrics, including ERR and Succ@𝑘 .

C/W/L and ERG Metrics. First, define 0 ≤ 𝐶 (𝑖) ≤ 1 to be the
conditional continuation probability of a user who has examined
the item at rank 𝑖 in a SERP also viewing the item at rank 𝑖 + 1
(rather than exiting the SERP) [25, 26]. Any particular specification
of a function 𝐶 (𝑖) defines a user browsing model – the manner in
which the user consumes the items in the SERP. For now, we work
with arbitrary functions 𝐶 (𝑖) and place no constraints on their
properties; factors that might influence 𝐶 (𝑖) are discussed later.

From 𝐶 (𝑖) we calculate 𝑉 (𝑖), the fraction of users that view the
document at rank 𝑖 , starting with the assumption that 𝑉 (1) = 1

Table 1: Example of C/W/L ERG computation. The columns headed
𝑟𝑖 and 𝐶 (𝑖) are arbitrary, everything else follows from those values.
The first of the four sums is 𝑉 +, the last is the ERG metric value.

𝑖 𝑟𝑖 𝐶 (𝑖) 𝑉 (𝑖) 𝐿(𝑖) 𝑊 (𝑖) 𝑊 (𝑖) · 𝑟𝑖
1 0.7 0.8 1.000 0.200 0.239 0.167
2 0.4 1.0 0.800 0.000 0.191 0.076
3 0.0 1.0 0.800 0.000 0.191 0.000
4 1.0 0.7 0.800 0.240 0.191 0.191
5 0.5 0.4 0.560 0.336 0.134 0.067
6 0.3 0.0 0.224 0.224 0.054 0.016

sums 4.184 1.000 1.000 0.518

and every user examines the first item in the ranking, and com-
puted thereafter as the product of the fraction that view the 𝑖 − 1 st
document and the fraction that continue from depth 𝑖 − 1 to depth 𝑖:

𝑉 (𝑖) =
𝑖−1∏
𝑗=1

𝐶 ( 𝑗) . (1)

The expected number of items viewed per user is then given by:

𝑉 + =

∞∑︁
𝑖=1

𝑉 (𝑖) . (2)

Note that 𝐶 (·) should be such that 𝑉 + is finite and calculable for
any particular ranking. This requirement is satisfied if 𝐶 (𝑖) = 0 at
least once, and also if ∃𝜖 > 0 such that {𝑖 | 𝐶 (𝑖) ≥ 1 − 𝜖} is finite.

Once 𝑉 + is known,𝑊 (𝑖), the fraction of user attention paid to
the 𝑖 th item in the ranking, can be calculated:

𝑊 (𝑖) = 𝑉 (𝑖)
𝑉 + . (3)

In the C/W/L framework [27], expected rate of gain (ERG) metrics
have units of “expected utility accrued per item inspected” with the
expectation relative to the attention fractions implied by𝑊 (·):

𝑀CWL-ERG (r) =
∞∑︁
𝑖=1

𝑊 (𝑖) · 𝑟𝑖 , (4)

in which 0 ≤ 𝑟𝑖 ≤ 1 is the gain (or utility) associated with the 𝑖 th
item in the ranking, ranging from “not at all relevant” (𝑟𝑖 = 0) to
“perfectly relevant” (𝑟𝑖 = 1). Table 1 provides a worked example,
assuming a set of 𝐶 (𝑖) values taken to be a model of user browsing
behavior, and a set of 𝑟𝑖 gains associated with some ranking of in-
terest. Note that because𝐶 (6) happens to be zero,𝑉 (7) and beyond
are also zero, and finite sums are sufficient to calculate 𝑉 + and
𝑀CWL-ERG (·) exactly. In more general cases in which 𝐶 (𝑖) is always
greater than zero, the sum 𝑉 + is computed either via a closed form
for the corresponding infinite sum, when 𝐶 (𝑖) has an amenable
form; or to some required degree of precision by summing a suitable
number of terms when 𝐶 (𝑖) does not. At the same time, if not all
corresponding values of 𝑟𝑖 are known, the weights𝑊 (𝑖) attached to
the unknown ones can be accumulated as a residual [25], indicating
the extent of the imprecision in the computed metric score.
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C/W/L and ETG Metrics. The third component of the C/W/L
functions, 𝐿(𝑖), is the probability that the item at rank 𝑖 will be the
last one viewed by any given user:

𝐿(𝑖) = 𝑉 (𝑖) −𝑉 (𝑖 + 1) = 𝑉 (𝑖) (1 −𝐶 (𝑖)) . (5)

Note that
∑∞
𝑖=1 𝐿(𝑖) = 1 and that 𝐿(·) is a probability distribution

over a population of users, with their expected exit rank given by:
∞∑︁
𝑖=1

𝑖 · 𝐿(𝑖) =
∞∑︁
𝑖=1

𝑖 · (𝑉 (𝑖) −𝑉 (𝑖 + 1)) =
∞∑︁
𝑖=1

𝑉 (𝑖) = 𝑉 + .

With 𝐿(·) so defined it becomes possible to compute the total
utility gained by an average user given the model of browsing as
the expected total gain (ETG) metric score:

𝑀CWL-ETG (r) =
∞∑︁
𝑖=1

𝐿(𝑖) · ©­«
𝑖∑︁
𝑗=1

𝑟 𝑗
ª®¬ . (6)

Note that Equations 4 and 6 imply the relationship:

𝑀CWL-ETG (r) = 𝑉 + ·𝑀CWL-ERG (r) ,
with the expectation in ERG metrics being “per item inspected, over
all document views undertaken by all users”, and the expectation in
ETG metrics being “over all users”.

Defining Metrics. If 𝐶 (·) is a conditional continuation function,
then the C/W/L framework in essence provides two operators,
CWLERG (·) and CWLETG (·), that map 𝐶 (·) to two corresponding
batch evaluation metrics. Conversely, many current metrics can
be completely described via specification of their underlying 𝐶 (·)
function [26, 27]:
• Precision at depth 𝑘 , Prec@𝑘 , is a CWL-ERG metric defined by

𝐶Prec@𝑘 (𝑖) =
{

1 if 𝑖 < 𝑘

0 otherwise . (7)

That is, Prec@𝑘 ≡ CWLERG (𝐶Prec@𝑘 ). While Prec@𝑘 is typically
regarded as applying only to binary relevance grades 𝑟𝑖 ∈ {0, 1},
this definition via CWLERG (·) also handles real-valued gains 0 ≤
𝑟𝑖 ≤ 1 in a natural manner.

• Rank-biased precision with persistence parameter 0 ≤ 𝜙 < 1,
RBP@𝜙 [25], is also a CWL-ERG metric, and is defined by

𝐶RBP@𝜙 (𝑖) = 𝜙 . (8)

That is, RBP@𝜙 ≡ CWLERG (𝐶RBP@𝜙 ).
• Discounted cumulative gain to depth 𝑘 , DCG@𝑘 [20], is a CWL-
ETG metric described by

𝐶DCG@𝑘 (𝑖) =
{

log2 (𝑖 + 1)/log2 (𝑖 + 2) if 𝑖 < 𝑘

0 otherwise . (9)

As is also the case with RBP@𝜙 , the gain values 𝑟𝑖 are real-valued.
The corresponding CWL-ERG metric normalizes by the DCG@𝑘

score of a ranking in which 𝑟𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑘 , and is
sometimes referred to as scaled DCG, SDCG@𝑘 , with metric
values between zero and one; see, for example, Moffat et al. [26].

• Normalized discounted cumulative gain, NDCG@𝑘 [20], is com-
puted as DCG@𝑘 normalized by a different constant (the ideal
DCG@𝑘 score for this query at depth 𝑘 , given knowledge of
all relevant or partially relevant documents) and is thus also an
ERG-like metric. Because the ideal DCG@𝑘 score used to derive

NDCG@𝑘 from DCG@𝑘 is always less than the all-fully-relevant
normalization used to compute SDCG@𝑘 , for any given topic
NDCG@𝑘 is larger than SDCG@𝑘 by a fixed multiple.

• Average precision, AP [5], is a CWL-ERG metric for binary rele-
vance grades 𝑟𝑖 ∈ {0, 1}, defined by

𝐶AP1 (𝑖) =
∑∞

𝑗=𝑖+1 (𝑟 𝑗/ 𝑗)∑∞
𝑗=𝑖 (𝑟 𝑗/ 𝑗)

. (10)

That is, AP ≡ CWLERG (𝐶AP1) describes the exact same metric as
the standard definition of AP via the average of the precisions at
the points in the ranking at which the relevant documents occur:

AP(r) = 1
𝑅

∞∑︁
𝑖=1

(
𝑟𝑖 · Prec@𝑖 (r)

)
, (11)

in which 𝑅 =
∑∞
𝑖=1 𝑟𝑖 is the total number of relevant documents

in the collection. As was the case with Prec@𝑘 , this definition
includes a natural extension to real-valued gains 0 ≤ 𝑟𝑖 ≤ 1, an
enhancement that has also been considered directly [13, 29]. (A
second continuation function that describes AP is introduced in
Section 3 and is denoted 𝐶AP2.)

• Reciprocal Rank, RR, is a CWL-ERG metric defined for binary
relevance grades by

𝐶RR (𝑖) = 1 − 𝑟𝑖 . (12)

• INST is a CWL-ERG metric defined for graded relevance via the
continuation function [27]:

𝐶INST@𝑇 (𝑖) =
(
𝑖 +𝑇 +𝑇𝑖 − 1
𝑖 +𝑇 +𝑇𝑖

)2
(13)

where 𝑇 is a parameter governing the user’s browsing behavior
and corresponds to the total gain that they seek to reap as a result
of their query, and where 𝑇𝑖 is the amount of that nominal gain
target that remains unfound after the 𝑖 th entry in the SERP has
been considered, that is, 𝑇𝑖 = 𝑇 −∑𝑖

𝑗=1 𝑟 𝑗 .

Note that INST@𝑇 is an adaptive metric, as is RR, in that the gain
values associated with the items already viewed will influence
the user’s likelihood of proceeding to the next item in the SERP.
On the other hand, the browsing models associated with Prec@𝑘 ,
RBP@𝜙 , and DCG@𝑘 are static, and assume that the user’s actions
are completely unaffected by the quality of the documents that they
observe as they proceed through the SERP. Item gain values 𝑟𝑖 also
influence the continuation conditional probabilities associated with
𝐶AP1, but it is future gains that are taken into account, rather than
observed gains. That is, AP doesn’t assume users are adaptive, it
assumes that they are clairvoyant.

A range of further metrics can also be described with the C/W/L
framework [2] such as Time Biased Gain (TBG) TBG [36, 37]; the U-
Measure[31]; the Bejewelled Player Model (BPM) [43]; Information
Foraging Theory (IFT) [1]; along with data driven approaches to
estimate the 𝐶 function directly [3, 40, 45].

Expected Reciprocal Rank. On the other hand, there are also
metrics that do not have corresponding explanations via the C/W/L
framework. One such metric is expected reciprocal rank, ERR [8],
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defined for real-valued gain values 0 ≤ 𝑟𝑖 ≤ 1 as

ERR(r) =
∞∑︁
𝑖=1

©­«𝑟𝑖𝑖 ·
𝑖−1∏
𝑗=1

(1 − 𝑟 𝑗 )
ª®¬ . (14)

When all of the 𝑟𝑖 values are binary, ERR(r) = RR(r). But the added
flexibility of ERR compared to RR in allowing real-valued gain
values (for example, 𝑟𝑖 = 0.5 as “partially relevant”) breaks that
connection, and means that ERR cannot be described via a 𝐶 (·)
function. Azzopardi et al. [4] demonstrate that fact, and consider a
suite of C/W/L-compliant metrics that might be used to approxi-
mate (but not match) ERR’s behavior. Similarly, the metric Succ@𝑘

– which measures the degree to which any document in the top
𝑘 matches the query – instantiates a different gain accumulation
assumption, and cannot be described by the C/W/L framework.

3 GENERALIZING C/W/L TO GET C/W/L/A
In this section we develop a more flexible approach – the C/W/L/A
structure – that accommodates ERR and Succ@𝑘 directly. More
importantly, that flexibility opens a path to a broad range of other
batch evaluation metrics, many of which are considered in Section 4.

Proposed Generalization. The C/W/L expected total gain met-
rics, defined via Equation 6, are computed as an inner product of
two components: (1) the fraction of users who exit the SERP at
depth 𝑖 , 𝐿(𝑖); and (2) the sum of the gains observed by a user who
traverses ranks 1 through to 𝑖 . That second quantity –

∑𝑖
𝑗=1 𝑟 𝑗 –

represents that user’s aggregate benefit, derived from their par-
ticular journey through the SERP. It has the role of quantifying
how each user “feels” as they move on to their next task, using the
information that they gleaned via their search; and hence if 𝐶 (·)
summarizes the universe of users’ actions in regard to that query
and that SERP, then

∑𝑖
𝑗=1 𝑟 𝑗 is an assessment of the universe of

users’ reactions. That is, the C/W/L framework assumes that each
of the SERP elements that the user observes has equal and indepen-
dent merit in determining their overall reaction, and that per-item
relevance utilities should be summed to compute user reaction.

Our key observation in this paper is that the aggregation process
need not be fixed, and can instead be given its own identity, with
the summation

∑𝑖
𝑗=1 𝑟 𝑗 one option, but others also possible. That is,

we now separate the “continuation” part of the C/W/L framework,
the description of user action, from the derived benefit part, to
independently account for user reaction.

Define 𝐶 (·) and 𝐿(·) as above. Each user in the population is
assumed to traverse the ranking from the top item though to their
exit point, with fraction 𝐿(𝑖) of the user population exiting immedi-
ately after viewing the item at rank 𝑖 . Those users will have viewed
documents 1 to 𝑖 inclusive, and are assumed to have constructed
an aggregate gain value 𝐴(⟨𝑟1, 𝑟2, . . . , 𝑟𝑖 ⟩) from the corresponding
item gains. Using the shorthand 𝐴(𝑖) for 𝐴(⟨𝑟1, 𝑟2, . . . , 𝑟𝑖 ⟩), a new
family of metrics can then be specified via:

𝑀CWLA (r) =
∞∑︁
𝑖=1

𝐿(𝑖) · 𝐴(𝑖) . (15)

We further define CWLA(·, ·) to be an operator that uses Equa-
tions 1, 5, and 15, to combine a 𝐶 (·) and an 𝐴(·) function to create

Table 2: Example of generalized C/W/L/A computation using 𝐴avg
(Equation 19). The columns headed 𝑟𝑖 and 𝐶 (𝑖) are arbitrary (as in
Table 1), the other values then follow.

𝑖 𝑟𝑖 𝐶 (𝑖) 𝑉 (𝑖) 𝐿(𝑖) 𝐴avg (𝑖) 𝐿(𝑖) · 𝐴(𝑖)
1 0.7 0.8 1.000 0.200 0.700 0.140
2 0.4 1.0 0.800 0.000 0.550 0.000
3 0.0 1.0 0.800 0.000 0.367 0.000
4 1.0 0.7 0.800 0.240 0.525 0.126
5 0.5 0.4 0.560 0.336 0.520 0.175
6 0.3 0.0 0.224 0.224 0.483 0.108

sums 4.184 1.000 0.549

an effectiveness metric in which the measured quantities are in
units of “average aggregate gain per user”.

To capture the aggregation function already referred to, the per-
item gains can be summed:

𝐴ETG (𝑖) =
𝑖∑︁
𝑗=1

𝑟 𝑗 . (16)

With this formulation for 𝐴(𝑖) we then have

CWLETG (𝐶) ≡ CWLA(𝐶,𝐴ETG) ,
that is, the C/W/L expected total gain (ETG) metrics are a subset of
the C/W/L/Ametrics. For example, DCG@𝑘 ≡ CWLA(𝐶DCG@𝑘 , 𝐴ETG).

Another viable option is to take:

𝐴ERG (𝑖) =
1
𝑉 +

𝑖∑︁
𝑗=1

𝑟 𝑗 , (17)

from which it is clear that:

CWLERG (𝐶) ≡ CWLA(𝐶,𝐴ERG) ;
that is, the C/W/L expected rate of gain (ERG) family are also a
subset of the new larger family: RBP@𝜙 ≡ CWLA(𝐶RBP@𝜙 , 𝐴ERG),
for example.

The remainder of this section revisits a number of existing met-
rics using the C/W/L/A structure; considers several further 𝐴(·)
functions that open up other possibilities; presents the broad range
of metrics that can then be addressed; and then finally compares
our taxonomy to other categorizations that have been proposed.

Expected Reciprocal Rank Revisited. As a first example, ERR
is readily defined in the C/W/L/A framework. One part of it has
already been provided as 𝐶ERR (Equation 12). However, as shown
by Azzopardi et al. [4], CWL(𝐶RR) does not define ERR. But an𝐴(·)
function that captures how the user “feels” when they leave the
ranking after inspecting 𝑖 items can fill that gap. In the case of ERR
the required expression is:

𝐴ERR (𝑖) = 1/𝑖 , (18)

indicating that as the user looks at more documents in the ranking
they become increasingly dissatisfied with it. Note, however, that if
they are seeing good quality documents, the low values generated
by 𝐶RR mean that they are likely to examine only a few documents,
and will leave satisfied.



A Flexible Framework for Offline Effectiveness Metrics SIGIR ’22, July 11–15, 2022, Madrid, Spain

Whether this𝐴(·) function – or any of the others – is a plausible
model for user reactions as they view SERPs can then either be
argued for in rhetorical terms, or evidence in support of the conjec-
tured behaviors can be sought. The important thing provided by
the C/W/L/A framework is the explanation for the derived score,
given the assumptions about user behavior. It provides an equiva-
lence between the mathematical computation associated with the
metric and hypothesized user behaviors that may be observable in
an experimental setting. Section 4 returns to this notion.

The browsing model associated with ERR assumes that each
user scans the ranking until they encounter a document that, to
their probabilistic perception, satisfies their information need, see
Azzopardi et al. [4, Figure 1]. This means that even though 𝐴ERG
is not employed, ERR nevertheless has a sense of measuring SERP
quality in units of expected gain per document. The “per” compo-
nent is instead a result of 𝐴ERR’s normalization by 𝑖 , the number of
documents inspected by this user. That is, ERR can be considered
to have units of “expected perceived gain per document inspected”,
but calculated for each topic as a macro average across users rather
than a micro average across documents viewed by users.1 Similarly,
in a “ETG-like” sense, ERR asserts that the user always exits the
ranking with a total perceived gain of one.

Further Aggregation Functions. The shift in perspective from
C/W/L to C/W/L/A means that a range of other aggregation func-
tions can now be considered. Drawing on the macro- versus micro-
averaging issue that makes ERR distinctive, one plausible option is
to suppose that each user’s perception of the ranking is determined
by the average relevance that they observe:

𝐴avg (𝑖) =
1
𝑖

𝑖∑︁
𝑗=1

𝑟 𝑗 . (19)

Another option is to argue that the user’s opinion of the SERP will
be completely dominated by the best element that they observed:

𝐴max (𝑖) = max𝑖𝑗=1𝑟 𝑗 ; (20)

or by the last element that they observed:

𝐴fin (𝑖) = 𝑟𝑖 . (21)

Linear combinations of Equations 20 and 21 with the intention
of accommodating the well-known “peak end” rule [15] are also
possible, and are considered shortly.

Average Precision Revisited. The flexibility of the new frame-
work also allows for Robertson’s [28] alternative explanation of
average precision to be encoded in C/W/L/A.

1As a brief explanation of macro- and micro-averages: suppose that three rounds of
observations are available: 3 successes out of 5 trials; 4 successes out of 7 trials; and
7 successes out of 9 trials. Then the micro average of the observations is a simple
aggregation of successes relative to trials, without regard to the rounds:

(3 + 4 + 7)
(5 + 7 + 9) =

14
21

= 0.667

whereas the macro average averages the individual rounds’ success rates:

1
3

(
3
5
+ 4
7
+ 7
9

)
= (0.600 + 0.571 + 0.777)/3 = 0.681 .

The computation in Table 1 employs micro-averaging, treating each item inspection
as an observation, whereas Table 2 employs macro averaging, taking each user as a
round of observations, to get a different score for the same SERP.

Again assuming binary relevance judgments, 𝑟𝑖 ∈ {0, 1}, AP can
be described via the alternative formulation:

𝐶AP2 (𝑖) =
∑∞

𝑗=𝑖+1 𝑟 𝑗∑∞
𝑗=𝑖 𝑟 𝑗

, (22)

with 𝐶AP2 (𝑖) defined to be zero once 𝑖 is large enough that the
denominator

∑∞
𝑗=𝑖 𝑟 𝑗 reaches zero. Then AP ≡ CWLA(𝐶AP2, 𝐴avg):

each user selects one of the relevant documents at random, and
then asks what the precision is at that point. The “choose a rele-
vant document at random” part is accounted for by the definition
of 𝐶AP2 (𝑖), and then precision at that point by the corresponding
𝐴avg (𝑖) formulation, noting that 𝐿(𝑖) will only be non-zero at the
points in the ranking at which 𝑟𝑖 ≠ 0, and hence𝐴(𝑖) can be allowed
to be any value at the points at which 𝑟𝑖 = 0 (and thus 𝐶 (𝑖) = 1
and 𝐿(𝑖) = 0). Note that both user models for AP stipulate that a
fraction of the user population pursues the ranking through until
the deepest relevant document has been encountered – and that
those users then somehow know that they have reached the last
relevant document and that it is time to stop.

These two different formulations of AP are another “macro ver-
sus micro” situation, but here the two variants (averaging over
observations, the C/W/L approach; and averaging over users, the
new approach) can be arranged to give the same result. The user
browsing models (the user “actions”) yield different expected num-
bers of documents viewed and hence different 𝐿(𝑖) values, but
the user “reaction” models compensate for that, making the two
computed values the same. Note also that 𝐶AP2 cannot be usefully
combined with either 𝐴ETG or 𝐴fin, because the resulting metrics
have no top-weighted component, and all permutations of a set
of documents receive the same metric score (the entries “XX” in
Table 3).

The two C/W/L/A-based AP formulations need not be restricted
to binary relevance judgments, and when non-binary relevance val-
ues 0 ≤ 𝑟𝑖 ≤ 1 are employed, give rise to a graded average precision
(grAP) metric (still with CWLA(𝐶AP1, 𝐴ERG) ≡ CWL(𝐶AP2, 𝐴avg))
that complements the previous proposals of Dupret and Piwowarski
[13] and Robertson et al. [29].

Rank-Biased PrecisionRevisited. Carterette [6] noted that there
was also an alternative interpretation of RBP@𝜙 , as the expected
gain arising from the last SERP item viewed. That is,

CWLA(𝐶RBP@𝜙 , 𝐴ERG) ≡ RBP@𝜙 ≡ CWLA(𝐶RBP@𝜙 , 𝐴fin) ,
a relationship that arises because of the particular properties of the
geometric distribution, forwhich𝑊RBP@𝜙 (𝑖) = 𝐿RBP@𝜙 (𝑖). Carterette’s
work is discussed in more detail at the end of this section.

More Combinations. Table 3 summarizes the situation described
to this point, placing all of the metrics discussed so far, and adding
a number of further ones: RelRet@𝑘 , the total volume of relevance
identified in the first 𝑘 items of the SERP; Succ@𝑘 , an assessment
of whether there are any useful items in the first 𝑘 positions of the
SERP; and, as already noted, a graded average precision option that
has a clear interpretation in terms of user behavior.

Metrics can also be placed in all of the unlabeled positions in
Table 3. For example, the combination CWLA(𝐶RBP@𝜙 , 𝐴max) might
be interesting for web search tasks, with a strongly top-weighted
focus when 𝜙 is less than around 0.7, and an overall assessment via
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Table 3: Combining 𝐶 (·) and 𝐴(·) functions using the CWLA(·, ·) operator to describe existing metrics and other combinations that may
be of interest. A superscript * indicates that the listed metric assumes binary relevance, 𝑟𝑖 ∈ {0, 1}. An “X” indicates a combination where
the relevance 𝑟𝑖 used in neither the 𝐶 (·) nor the 𝐴(·) component: these “metrics” are a constant. An “XX” indicates a combination where
the metric score is determined entirely by set of gains r, that is, without regard to the ordering of the documents within the SERP: these
metrics are a constant for any set of gains, and cannot distinguish two rankings of the same documents. Three of the 𝐴(·) functions are
non-decreasing; one is non-increasing; and the other two are not mono-directional.

𝐶 (·) function Eq. 𝐴(𝑖) function and equation number

𝐴ETG, 16 𝐴ERG, 17 𝐴ERR, 18 𝐴avg, 19 𝐴max, 20 𝐴fin, 21
non-dec. non-dec. non-inc. – non-dec. –

𝐶Prec@𝑘 7 RelRet@𝑘 Prec@𝑘 X Prec@𝑘 Succ@𝑘 –
𝐶RBP@𝜙 8 – RBP@𝜙 X – – RBP@𝜙

𝐶DCG@𝑘 9 DCG@𝑘 SDCG@𝑘 X – – –
𝐶AP1 10 – AP∗, grAP – – – –
𝐶RR 12 – RR∗ RR∗, ERR RR∗ – –
𝐶INST@𝑇 13 – INST@𝑇 – – – –
𝐶AP2 22 XX – – AP∗, grAP – XX

the best item that each user encountered in their perusal. The use of
𝐴max rather than𝐴ERG also has implications for residual calculations
[25]. For a given level of human judgment effort smaller residuals
for high-scoring systems – the ones that tend to be of greatest
interest in any experiment – makes measurement more precise.
This 𝐶RBP@𝜙 -based option, plus others amongst the combinations
shown in Table 3, is considered further in Section 4.

Not all combinations of 𝐶 (·) and 𝐴(·) are useful. The entries
in Table 3 marked “X” do not use document relevance, 𝑟𝑖 , in 𝐶 (·)
or 𝐴(·) at all: they are constants for all collections, queries, and
rankings, with their exact values depending only on the choice of
parameter. In addition, the entries marked “XX” do make use the 𝑟𝑖
values, but not in a way that reflects the SERP document ordering.
Any permutation of the same set of documents receives the same
score. This might be useful for estimating topic difficulty, but not
for measuring ranking quality, and nor for comparing two rankings
for the same query and collection.

New Aggregation Functions. The flexibility of the C/W/L/A
mechanism means that it is also possible to hypothesize further
ways in which users might react to the set of 𝑖 results that they
observe, and develop new𝐴(·) functions. We provide two examples
that illustrate that ability.

First, consider a user who is more influenced by recent observa-
tions than ones from further back in time. As they proceed from the
item at rank 𝑖 of the SERP to the one at rank 𝑖 +1 they “forget” some
fraction of their previously acquired utility, but (perhaps) gather
replacement utility from the 𝑖 + 1 st element. Define

𝐴fg,𝛿 (1) = 𝑟1 and 𝐴fg,𝛿 (𝑖 + 1) = 𝛿 · 𝐴fg,𝛿 (𝑖) + 𝑟𝑖+1 , (23)

so that the last viewed document is credited with its full gain, and
previous viewed elements from the SERP have their value eroded
via a geometric sequence based on 𝛿 . For example if 𝛿 = 0.5, then
𝐴(4) = 𝑟1/8 + 𝑟2/4 + 𝑟3/2 + 𝑟4, and so on. In this formulation
the measurement units are bounded above by the limit 𝐴fg,𝛿 (𝑖) ≤
1/(1−𝛿). That is, as 𝑖 becomes large, the user assumed to forget old
utility as fast as they can gather new utility – meaning that there
is a limit to how beneficial any single search can be (in a total gain

sense), without needing the somewhat artificial “@𝑘” limit that is
part of the definition of DCG@𝑘 . In the experiments reported in
Section 4 we use a single value, and take 𝛿 = 0.8, meaning that
the most recently-viewed document has around twice the weight
associated with it as the fourth most recent one does.

An interesting consequence of this definition is that 𝐴fin (𝑖) is
equivalent to 𝐴fg, with 𝛿 = 0, and 𝐴ETG (𝑖) is equivalent to 𝐴fg, with
𝛿 = 1; that is the parameter 𝛿 creates an 𝐴fg, spectrum with two
already-discussed aggregation functions at its extremal points. We
note that Wicaksono and Moffat [41] recently proposed a simi-
lar “forgetting” rule to handle users who undertake a sequence of
queries, and see a sequence of SERPs, as part of a search session.

The second new aggregation function we propose is loosely
based on the “peak-end” rule, which suggests that people judge an
experience by its peaks (both high and low), and by what occurred
most recently [15]. Here we take one peak, the best that has been
observed in the ranking through to this point, and define

𝐴PE,𝛽 (𝑖) = 𝛽 · 𝐴max (𝑖) + (1 − 𝛽) · 𝐴fin (𝑖) , (24)

to capture this notion, where 𝛽 is a blending ratio that again estab-
lishes a spectrum with two of the previous 𝐴(·) functions at its end
points. To avoid experimental parameter explosion, the experiments
in Section 4 consider just a single value, 𝛽 = 0.5.

Related Work. As noted above, Carterette [6] has already com-
mented on one of the dualities reported in Table 3 – that RBP@𝜙

has two alternative interpretations, both equally valid, one derived
using 𝐴ERG, and one derived via 𝐴fin. Indeed, although we have
presented the C/W/L/A structure here as a development of the
previous C/W/L approach, Carterette also anticipated much of its
structure in his 2011 paper.

Carterette’s interpretation of RBP@𝜙 as the expected gain re-
sulting from the last item viewed is an example of what he refers to
as a “Model 1, Expected Utility” metric. More generally, Carterette’s
Model 1metrics are the oneswe categorize here as theCWLA(·, 𝐴fin)
family, those for which the metric value is determined by the last
item the user viewed. Carterette’s 𝑃 (·) function is thus the equiva-
lent of the 𝐿(·) function defined by Equation 5. However Carterette
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also assumes a condition that we do not include here, namely that
𝑃 (·) is non-increasing, 𝑃 (1) ≥ 𝑃 (2) ≥ 𝑃 (3) ≥ · · · .

Similarly, Carterette’s “Model 2, Expected Total Utility” group-
ing corresponds to our CWLA(·, 𝐴ETG) family, with DCG@𝑘 pre-
sented as an exemplar. Carterette notes that 1/log2 (𝑖 + 1) has a
limiting value of zero; nevertheless, as we have observed here,
the problem remains that 𝐴ETG (𝑖) can grow faster with 𝑖 than
𝐿DCG (𝑖) ∝ (1/log2 (𝑖 + 1)) − (1/log2 (𝑖 + 2)) decreases; hence the
necessity of imposing a limiting depth 𝑘 if discounted cumulative
gain is to result in meaningful (and calculable) effectiveness scores.

Carterette’s third grouping, the “Model 3, Expected Effort” class,
seeks to capture the number of SERP items a user inspects to achieve
a given level of utility. Carterette places ERR in this family, arguing
that if a relevant document gives rise to (in our terms)𝐶 (𝑖) = 1− 𝜃 ,
and a non-relevant one to𝐶 (𝑖) = 0, then a weighting function of 1/𝑖
yields the expected reciprocal stopping rank. Finally, Carterette’s
fourth category, “Model 4, Expected Average Utility” corresponds
to the one we have labeled here as the 𝐴avg family, with AP pro-
vided as an example. Carterette goes on to describe two further
(in his terms) 𝑃 (·) functions, one that (in our terms) corresponds
to the continuation functions 𝐶 (𝑖) = 𝑖/(𝑖 + 1), and one that is
computed as 𝐶 (𝑖) = 1 when 𝑟𝑖 = 0, and 𝐶 (𝑖) = 𝑅𝑖/(𝑅𝑖 + 1) when
𝑟𝑖 > 0, where 𝑅𝑖 =

∑𝑖
𝑗=1 𝑟 𝑗 . As was also noted in connection with

DCG@𝑘 , neither of these 𝐶 (·) functions has the necessary conver-
gence properties to be taken to arbitrary depths, and hence must be
accompanied by an “@𝑘” depth limit in order to be used. In other
words, both of these 𝐶 (·) functions imply that in the absence of
a cutoff a non-negligible fraction of the population of users will
proceed through to any arbitrary point in the document ranking.

Our development here builds on both its C/W/L origin and on
Carterette’s work. By retaining the user’s actions as crystallized
into a 𝐶 (·) function, and placing constraints on the behavior of
that function, we have the ability to develop models that can be
checked against observable user behaviors (for example, via eye
tracking or click models) that do not require “@𝑘” cutoffs to be
specified. In addition, by explicitly separating the user’s set of
possible reactions to the SERP into an 𝐴(·) function, we are able
to develop mechanisms that reflect user satisfaction in regard to
different types of search task and different aggregation outcomes.

Other related work is presented by Zhang et al. [44], and in
the body of research undertaken those authors and a range of
collaborators, including Mao et al. [23]; Zhang et al. [43]; Chen
et al. [10]; Liu et al. [22]; and Zhang et al. [45]. Many of those
papers also report experimental user studies in which user-SERP
satisfaction ratings are requested; taken together, those datasets
also form a valuable resource. Throughout this work Zhang et al.’s
goal has been to develop metrics that reflect assumptions in regard
to user behavior, and that yield metric scores that correlate with
user satisfaction. Our work here fits that same context – our goal
is to better fit the metric’s evaluation to the users’ perceptions of
usefulness, so as to develop metrics that predict user satisfaction.

In particular, Zhang et al. [44] trace the development of user be-
havior modeling through the last two decades, starting with Järvelin
and Kekäläinen’s [20] DCG@𝑘 metric; and provide a comprehen-
sive overview of the various options that have been proposed. They
also tabulate more than twenty metrics (and hence user behavior

models) against a wide range of criteria, including (as just one ex-
ample) whether that model takes snippets as well as documents
into account in user decision-making.

Finally, we note that Fuhr [17] and Ferrante et al. [14] have pre-
sented arguments in regard to properties that they believe must
be required of all offline effectiveness metrics; and that those argu-
ments are currently being debated by the IR community [30].

4 EXPERIMENTS
We now turn to experimentation, to explore the spectrum of met-
ric possibilities suggested by the pairings of 𝐶 (·) and 𝐴(·) that
are evident in Table 3. Our goal is to establish whether there are
previously-unconsidered C/W/L/A combinations that it might be
worth elevating from being metrics that are merely “possible” to
being metrics that are “possibly of interest”.

Experiment 1: Tsinghua SERP Satisfaction. The first experi-
ment takes the per-SERP satisfaction data from the Tsinghua Q-Ref
collection2 and correlates whole-of-SERP satisfaction scores with
metric scores computed via a broad range of C/W/L/A combina-
tions. The collection contains around 7,500 SERP-level impressions,
each the result of an observed query. In this dataset individual doc-
ument grades are coded in [0, 3], with 0 indicating “this result is
useless” and 3 corresponding to “this result is serendipitous”; these
document grades are then used to compute SERP metric scores via
a linear gain mapping to 𝑟𝑖 ∈ {0, 1/3, 2/3, 1}. The same SERPs were
also scored holisticly on a five-point scale [0, 4], with a satisfaction
value of 0meaning unsatisfied, and a satisfaction score of 4meaning
very satisfied. In our analysis these five SERP satisfaction scores
were treated as ordinal classes and not as numeric values.

Table 4 shows the results of this experiment. Each entry is a
Kendall’s 𝜏b correlation coefficient over the approximately 7,500
SERPs, comparing the metric scores and the global set of ordinal
SERP satisfaction labels, with each row fixing one of the 𝐶 (·) func-
tions and each column fixing one of the 𝐴(·) functions. The higher
the correlation coefficient, the more consistent that metric is as a
predictor of user satisfaction. The maximum values in each row are
highlighted in blue; correspondingmetric names are (where labeled)
shown in the corresponding positions in Table 3. All correlations
are significantly different from zero, with 𝑝 ≪ 10−100 in all cases
exceptCWLA(𝐶Prec@𝑘 , 𝐴fin), where 𝑝 < 0.5, andCWLA(𝐶AP1, 𝐴ERR),
and CWLA(𝐶AP2, 𝐴ERR) which are not significantly correlated with
satisfaction at all. Table 4 also indicates, for each row (𝐶 (·) func-
tion), a canonical 𝐴(·) function. These are marked with “a” and are
metrics listed in Table 3: for example,𝐶RR plus 𝐴ERR is the ERR met-
ric. Entries “b” represent statistically significant improvements over
this baseline: for example, the metric CWLA(𝐶RR, 𝐴max) correlates
significantly better with satisfaction than ERR does.

The first three rows of Table 4 correspond to static continuation
functions, ones that are usually coupled with𝐴ERG (or, equivalently,
𝐴ETG). In all three cases the aggregation function 𝐴max outperforms
the usual 𝐴ERG, and for this dataset it appears that for static met-
rics – ones in which 𝐶 (𝑖) is not affected by 𝑟𝑖 – the maximum 𝑟𝑖
value seen is more predictive of satisfaction than is the total of the
observed 𝑟𝑖 values. The final 𝑟𝑖 seen is also less important than

2See Chen et al. [9] and data available from http://www.thuir.cn/tiangong-qref/.

http://www.thuir.cn/tiangong-qref/
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Table 4: Correlation between computed metric scores and user-reported whole of SERP satisfaction scores, computed as Kendall’s 𝜏b
coefficients derived from the Tsinghua dataset. Each entry in the table represents a distinct metric; values shown as “X” are constant functions
for which it makes no sense to report a correlation, see Table 3. The parameters used in the various 𝐶 (·) functions were 𝑘 = 5, 𝜙 = 0.8, and
𝑇 = 2.25. The canonical metric for each 𝐶 (·) function is marked with a superscript “a”; any 𝐴(·) functions giving significantly improved
correlation relative to those ones (holding 𝐶 (·) steady) are marked with “b”. The largest values in each row are highlighted in blue.

𝐴ETG 𝐴ERG 𝐴ERR 𝐴avg 𝐴max 𝐴fin 𝐴fg,0.8 𝐴PE,0.5

𝐶Prec@𝑘 0.328 0.328a X 0.328 0.418b −0.024 0.285 0.393b

𝐶RBP@𝜙 0.326 0.326a X 0.334 0.398b 0.326 0.326 0.366b

𝐶DCG@𝑘 0.334 0.334a X 0.323 0.390b 0.324 0.332 0.362b

𝐶AP1 0.369 0.388a 0.001 0.384 0.435b 0.446b 0.384 0.446b

𝐶RR 0.439b 0.381b 0.268a 0.381b 0.439b 0.439b 0.439b 0.439b

𝐶INST@𝑇 0.335 0.335a 0.321 0.330 0.365b 0.341 0.333 0.357
𝐶AP2 0.351 0.394 0.007 0.388a 0.435b 0.447b 0.371 0.446b

the largest (column 𝐴fin), even when blended with immediately
preceding 𝑟𝑖 values (column 𝐴fg,0.8) or with the maximum 𝑟𝑖 seen
(column𝐴PE,0.5). The combination CWLA(𝐶Prec@𝑘 , 𝐴fin) is especially
poor – it places the entire evaluation focus upon the 𝑘 th document
in the SERP and, unsurprisingly, is slightly negatively correlated
with user satisfaction. The change to𝐴max makes a big difference in
that first row, suggesting that Succ@𝑘 – which, like Prec@𝑘 , only
requires shallow relevance judgments – might be a useful member
of evaluation toolkits. The𝐶RBP@𝜙 version noted in connection with
Table 3 also falls into that “possibly of interest” category.

The four 𝐶 (·) functions in the lower section of Table 4 are all
sensitive to 𝑟𝑖 , two in an adaptive manner, and two in a clairvoyant
manner. Across this group 𝐴fin is stronger, in part because in each
of those four 𝐶 (𝑖) functions SERP exit at rank 𝑖 is more likely if 𝑟𝑖
is large, making it in turn more likely that the final item viewed
is also the best item seen. The two blended aggregation functions
(𝐴fg,0.8 and𝐴PE,0.5) also lift, because of the same effect. Overall,𝐴max
continues to provide strong performance in this group of rows,
but with the two AP-based 𝐶 (·) functions with 𝐴fin generating the
largest numbers in the table.

Figure 1 helps understand the correlation coefficients listed in
Table 4. In the left pane a C/W/L/A metric combination with a
moderate correlation with SERP satisfaction is shown, with the five
levels of SERP satisfaction showing somewhat irregular patterns
across the spectrum of computed metric scores. The right pane
shows a C/W/L/A combination with a higher 𝜏b correlation. In that
second plot each SERP grade level has a more distinct pattern of
metric scores, and the separations are more pronounced.

Experiment 2: Commercial Search Data. Table 4 demonstrates
that varying 𝐴(·) can result in metrics which result in improved
prediction of searchers’ self-reported satisfaction. In practice we
might care instead, or as well, about choosing between two search
engines or components thereof. That is, we may want to find which
of two systems is better (a relative measure), rather than how good
each is (an absolute measure). We now consider whether adding
𝐴(·) lets us improve metrics for this task.

We use a set of approximately 26,000 queries collected by Bing.
Crowd workers, subject to training and quality control, were told
that each query was run by two different engines, producing a pair
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Figure 1: Fractions of SERP satisfaction labels for the Tsinghua
dataset, with each of the ordinal SERP satisfaction labels plotted
cumulatively as a function of metric score. Two different combina-
tions of 𝐶 (·) and 𝐴(·) are shown, representing expected reciprocal
rank and the “novel” metric CWLA(𝐶RR, 𝐴max). The version with
𝐴max better separates the higher satisfaction levels.

of SERPs for each query (see Figure 2). They then labeled each pair of
SERPs using a preference slider, resulting in a judgment between −1
(strong preference for SERP 𝑆1) to+1 (strong preference for SERP 𝑆2).
Each pair was labeledmultiple times, with allocation to left and right
sides controlled to account for left-right bias [16]. We then reduced
the preferences to ternary variables: overall preference for SERP1,
SERP2, or neither, according to the sign of the mean preference,
and used those ternary categories in the analyses reported shortly.

Separately, and via a different set of trained and audited crowd
workers, the top three results from each SERP were labeled for
relevance on a five-point ordinal scale from “bad” to “perfect”. We
mapped the five points of this scale to gains 𝑟𝑖 ∈ {0, 1/4, 1/2, 3/4, 1}.
Computing metric scores across rankings containing just three
judged documents is at best a coarse approximation, of course.
Compounding that approximation risk is lack of knowledge of
𝑅 =

∑∞
𝑖=1 𝑟𝑖 , the total relevance, which is required in order to calcu-

late AP (and hence𝐶AP1 and𝐶AP2). We approximated the “collection
𝑅” by the “within-run” total relevance (an approach referred to as
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Table 5: Correlation between differences in computed metric scores and side-by-side paired SERP ternary preferences, computed as Kendall’s
𝜏b coefficients derived from the Bing dataset. Entries shown as “X” or “XX” are constant functions for which it makes no sense to report a
correlation, see Table 3. The parameters used in the various 𝐶 (·) functions were 𝑘 = 3, 𝜙 = 0.5, and 𝑇 = 1. The canonical metric for each
𝐶 (·) function is marked with a superscript “a”, and the largest values in each row are highlighted in blue. All correlations are statistically
significant at 𝑝 ≪ 10−10, except CWLA(𝐶AP1, 𝐴ERR) where correlation is significant at 𝑝 < 0.02; in this setting no combinations significantly
improve on the canonical metric in each row.

𝐴ETG 𝐴ERG 𝐴ERR 𝐴avg 𝐴max 𝐴fin 𝐴fg,0.8 𝐴PE,0.5

𝐶Prec@𝑘 0.081 0.081a X 0.081 0.070 0.044 0.073 0.060
𝐶RBP@𝜙 0.083 0.083a X 0.080 0.076 0.083 0.082 0.079
𝐶DCG@𝑘 0.083 0.083a X 0.082 0.076 0.073 0.082 0.079
𝐶AP1 0.077 0.072a −0.012 0.072 0.066 0.060 0.075 0.060
𝐶RR 0.071 0.081 0.071a 0.081 0.071 0.071 0.071 0.071
𝐶INST@𝑇 0.081 0.081a 0.077 0.078 0.075 0.079 0.080 0.078
𝐶AP2 XX 0.071 −0.017 0.072a 0.066 XX 0.076 0.061

SERP S1

Good

Bad

Bad Bad

Excellent

Good

SERP S2

Figure 2: Data collection process for the Bing dataset, showing
two SERPs, 𝑆1 and 𝑆2. Assessors view each pair of standard SERPs
side by side and indicate their preference between them using a
slider. The documents shown at the top of each SERP are judged
for relevance on a five-point scale, as a separate activity.

“self-normalizing AP” by Moffat [24], and also used for Table 4), ac-
knowledging that this may result in AP scores for SERP preference
pairs derived from different assumed recall bases 𝑅.

We then processed the side-by-side preference pairs. For each
metric and pair of SERPs we calculated two scores, and took their
difference, obtaining values from −1 to +1. Finally, for each metric
we computed the correlation between the differences in scores and
the ternary side-by-side preference category. A metric which is
good for this task would have high correlation, that is, the metrics
from combining document-level labels would predict the SERP-level
preference. Results are summarized in Table 5.

As can be seen, the 𝜏b scores are lower across the board: in
the experimental structure used, score differences correlate with
side-by-side preference much less than individual scores corre-
late with satisfaction, for all metrics. Figure 3 illustrates this with
CWLA(𝐶RBP@𝜙 , 𝐴ERG), the best-performing metric. Although there
is a clear SERP preference at large metric differences, across much of
the range the preference is more balanced. This lack of correlation
is not surprising: any noise in the metrics is increased by measur-
ing twice. Different workers were also given the two tasks. Finally,
workers were asked about different objects – single documents in
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Figure 3: Distribution of preferences between SERPs, as a function
of difference between scores computed for each SERP. Score differ-
ence is only weakly predictive of preference over the middle part
of the score difference range.

one case, pairs of SERPs in the other – and a SERP may be pre-
ferred for reasons such as diversity or captioning, which C/W/L/A
– at least in current form – is oblivious to. We note that Sakai and
Zeng [32, 33] have carried out similar experiments in which they
compare the SERP preference and the sign of the metric’s score
difference. Sanderson et al. [35] have also considered this issue.

Accordingly, in Table 5, none of the alternative 𝐴(·) functions
improve on the “canonical” metric variants. We can however note
one trend: 𝐴ETG and 𝐴ERG perform better here than in the earlier
experiment. This suggests the side-by-side judges were considering
the total “weight” of each SERP, perhaps imagining that a SERPwith
more relevant documents would serve more people or is somehow
more impressive. The Tsinghua participants, who labeled their own
searches, seem more swayed by single results, and the relative
performance across 𝐴(·) functions highlights this difference.



SIGIR ’22, July 11–15, 2022, Madrid, Spain Alistair Moffat, Joel Mackenzie, Paul Thomas, and Leif Azzopardi

5 CONCLUSIONS
We have added an explicit aggregation function to the C/W/L frame-
work, renamed as C/W/L/A, and demonstrated that the separation
of user browsing actions from each user’s summative assessment
of SERP quality leads to a powerful taxonomy that captures almost
all current effectiveness metrics, and has the flexibility to suggest a
wide range of other combinations not previously considered.

Our primary purpose has been to provide a cohesive structure
in which metrics can be formulated and argued about, and via that
structure, to illustrate possibilities and opportunities. In particular,
we have not sought to try and identify a “best” metric, because
metric choice must – of necessity – vary according to the nature
of the users, the nature of the task they are performing at the
time, the nature of the collection they are searching, the manner in
which the search results are presented, and so on. Nevertheless, our
experiments with two user-based datasets suggest that the flexible
offline evaluation possibilities created by the C/W/L/A framework
will be of interest to researchers and practitioners alike.
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