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Abstract In top-k ranked retrieval the goal is to efficiently compute an or-
dered list of the highest scoring k documents according to some stipulated
similarity function such as the well-known BM25 approach. In most imple-
mentation techniques a min-heap of size k is used to track the top scoring
candidates. In this work we consider the question of how best to retrieve the
second page of search results, given that a first page has already been com-
puted; that is, identification of the documents at ranks k + 1 to 2k for some
query. Our goal is to understand what information is available as a by-product
of the first-page scoring, and how it can be employed to accelerate the second-
page computation, assuming that the second-page of results is required for
only a fraction of the query load. We propose a range of simple, yet efficient,
next-page retrieval techniques which are suitable for accelerating Document-
at-a-Time mechanisms, and demonstrate their performance on three large text
collections.
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1 Introduction

Top-k similarity search is a well-known problem in information retrieval. Given
a collection of documents, D, and a query of q terms Q = {t1, t2, . . . , tq}, the
goal is to find the k highest scoring documents in D according to a similarity
function S(Q, d) (Zobel and Moffat, 2006). Those k documents are then pre-
sented in a search result page (SERP), for the query issuer to peruse. In the
majority of cases one page of results satisfies the user’s information need, and
no further involvement from the system is required. But for some fraction ρ of
queries, 0 ≤ ρ ≤ 1, a second SERP is requested by the user, so that they can
continue their browsing; with that fraction depending in part upon the type
of search being performed. For example, job search has different properties to
web search, with users much more likely to examine documents deep in the
ranking (Mansouri et al., 2018; Spina et al., 2017).

We consider techniques for efficiently computing that second page of results
beyond the initial top-k SERP. One obvious approach to second page retrieval
is to undertake a “top-2k” computation each time a second SERP is requested,
and then discard the first k documents so as to present documents k+1 to 2k.
This might be palatable if ρ � 1, but becomes expensive when ρ is close to
one, since two query executions are required. Another obvious approach is to
always compute the top-2k documents for every query, and cache the second
page of results until (and if) required. But when ρ is very small, this approach
might be equally wasteful.

In this work we demonstrate that there is useful information that can be
retained from the first SERP’s top-k computation to accelerate computation
of a second SERP. In particular, we describe three alternatives that employ
state details captured at the end of the initial top-k traversal, and allow a suite
of trade-offs between latency and effectiveness that sit in the space between
the two obvious baselines that were noted above.

Our presentation proceeds as follows. Section 2 motivates the notion of
efficient next page retrieval and gives an overview of the query processing
mechanism we assume as a starting point. Section 3 then describes a range
of options for accelerating the computation of second result pages; and then
Section 4 compares a range of second-SERP mechanisms on three large data
sets, and shows that useful information can indeed be carried over from the
first top-k evaluation to reduce the time needed to generate a subsequent
second page of search results. We also consider the possibility of very rapidly
generating a high-quality approximate second-page ranking, without requiring
it to be exactly the same as the second page of a full top-2k computation, and
demonstrate further trade-off possibilities. Finally, Section 5 discusses some
limitations of our proposal, and considers possible extensions of it.
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Fig. 1: Click positions, stratified by the first clickthrough for each query,
and the total across all clickthroughs for each query, for the first 50 ranks
in the SERPS associated with the 2006 MSN query log. (Redrawn from data
presented as Figure 8 of Zhang and Moffat (2006).)

2 Background

First, we motivate the problem of efficient next-page retrieval by reviewing
the literature on user behavior. Then, we provide an overview of the query
processing mechanisms we assume as starting points for our analysis.

User Browsing Behavior. A range of studies have examined how users in-
teract with ranked lists of results on search engine result pages (SERPs). Early
work explored user interaction patterns through large-scale query logs derived
from web search systems, demonstrating that users typically browse in a top-
down fashion, with the majority of clicks occurring on the first page, and the
majority of users only viewing a single SERP (Jansen and Spink, 2006; Jansen
et al., 2000; Silverstein et al., 1999; Spink et al., 2001). These observations
have been confirmed in more recent studies (Costa and Silva, 2010). Beyond
web search, user behavior depends on the search task and the user’s goal; one
obvious example is job search, where users have been shown to be much more
persistent than in web search scenarios (Spina et al., 2017; Wicaksono and
Moffat, 2018). Furthermore, user behavior has been shown to change depend-
ing on the size of the SERP, and user models have been designed to capture the
effects of the SERP size and screen size on user browsing behavior (Azzopardi
and Zuccon, 2016; Kelly and Azzopardi, 2015).

Figure 1, which is constructed from data generated by Zhang and Moffat
(2006) and replicates Figure 8 of that paper, shows an example clickthrough
distribution over approximately 12 million clicks into SERPS associated with
the MSN search engine in May 2006. As expected, most of the user attention
is focused on the early positions of the first page, with a large drop-off across
page boundaries, but with some small percentage of users proceeding into the
second results page. In our experiments we explore a variety of plausible values
of ρ, the fraction of queries which have a second page request, to capture
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various situations and to understand the trade-offs which arise in different
search contexts.

Efficient Query Processing. A wide range of text similarity computations
can be computed as a sum, over the terms t that appear in a query Q, of
term-document score contributions:

S(Q, d) =
∑
t∈Q
C(t, d) .

For example, the well-known BM25 mechanism (Robertson and Zaragoza,
2009) can be fitted into this framework. To compute the top-k answer rel-
ative to a collection of documents, the postings lists for the query’s terms are
merged, with each of the documents that contain any of the terms having its
score computed in turn. In this document-at-a-time (DaaT) processing mode,
a set of top-k document-score pairs are maintained in a min-heap, with at any
given time the k th largest value defining a heap entry threshold , denoted θ.
As each document is scored, it either enters the heap, displacing the current
k th smallest, and causing θ to increase; or it is immediately discarded as being
outside the current top-k set, and hence guaranteed to also be outside the final
top-k set. After all of the documents have been considered, θ reaches its final
value, denoted here as Θk.

This underlying processing approach can be accelerated through the use
of dynamic pruning techniques, which monitor θ and compare it to an easily-
computed upper score bound estimate for each document, based on its post-
ings. If the upper bound estimate indicates that the document could attain
a similarity score S(Q, d) > θ, then that document’s score is fully computed,
and properly compared against θ. But when it is clear from the upper bounds
on the term-document contributions that S(Q, d) ≤ θ, then d’s score does
not need to be computed, and d can be bypassed . This observation led to
the WAND mechanism, in which each term’s postings list is augmented by a
single maximum (over documents d in the collection D) C(t, d) value (Broder
et al., 2003); then, with increased accuracy in the upper bound estimates, to
the block-max WAND (BMW) approach (Ding and Suel, 2011), which stores
an upper bound per term per block of postings; and finally to the variable
block-max WAND (VBMW) implementation (Mallia et al., 2017), in which
the lengths of the postings blocks are adjusted to capture local variations in
C(t, d), thereby providing even tighter upper bounds. Mallia et al. (2019b) and
Mackenzie and Moffat (2020) describe experiments that compare these three
alternatives, and the baseline DaaT mechanism that they are all derived from.

At the end of DaaT top-k processing for a query, there will thus be four
categories of documents that have been identified:

– Those that were scored, entered the heap, and remained in the heap until
the end of the processing to form the top-k set (the successful documents);

– Those that were scored, entered the heap, but were later evicted from
the heap as a result of a higher-scoring document being encountered (the
ejected documents);
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Fig. 2: An example of top-k retrieval with k = 3 (top) and k = 6 (bottom), with
four classes of documents: successful (green); ejected (blue); denied (pink); and
bypassed (dark gray). In this example, all but one of the documents in the top
k = 6 results were scored during k = 3 traversal.

– Those that were scored, but when their score was calculated, did not make
it into the heap (the denied documents); and

– Those that didn’t get scored because of the dynamic pruning filter (the
bypassed documents).

The top-k answer is exactly the first set, and none of them can appear in the
second page of results. However the second SERP might contain documents
from any of the other three categories; that is, the second results page could
contain ejected, denied, or even bypassed documents. Figure 2 illustrates the
way in which the increasing heap threshold θ partitions documents into these
four classes, with the top-3 (top) and the top-6 (bottom) documents being
identified. In the latter case fewer documents can be bypassed (dark gray
points), more documents must be fully scored (green, blue, and pink points),
more of them enter the heap (green and blue points), and more of them remain
in the heap right through the query execution (green points).

Advance knowledge of a lower bound on the final k th largest similarity
score can assist the dynamic pruning process (Fontoura et al., 2011). For ex-
ample, de Carvalho et al. (2015) store the values of the k th highest scores in
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each postings list for certain values of k. Initializing θ to the largest (across the
terms) of the k th largest (across documents) contributions C(t, d) is then safe,
because for the given query there must be at least k similarity scores greater
than or equal to that value. Kane and Tompa (2018), Yafay and Altingovde
(2019), and Petri et al. (2019) have explored similar options, and Mallia et al.
(2020) compare a range of such initializations.

A final point to note in this section is that mechanisms for top-k and sec-
ond page retrieval can be categorized as being either safe or approximate. A
safe technique guarantees delivery of rankings that are identical to those at-
tained by an exhaustive full query evaluation over all documents and over all
terms; on the other hand, an approximate (or non-safe) approach might con-
struct rankings deviating from that ideal output, as a consequence of heuris-
tics that reduce computation time. The fidelity of a non-safe approximation
can be judged by computing a rank-weighted or unweighted overlap coeffi-
cient between the ideal (safe) and approximate rankings, with some suitable
tie-breaking rule used to handle same-score documents consistently (Lin and
Yang, 2019; Yang et al., 2016).

3 Efficient Next-Page Retrieval

We now describe a range of techniques for second-page retrieval, noting for
each whether or not it is safe. The first two are the obvious baselines already
mentioned in Section 1, to set a context.

On-Demand Computation (Baseline OD). The simplest baseline mecha-
nism is to compute more results only when, and exactly when, the need arises.
That is, if a second page is requested, the top-2k documents are computed
afresh, and the second half of that ranking is presented to the user. This ap-
proach correctly returns the documents occupying ranks k+1 to 2k, and is thus
safe. Each further “next page” request similarly results in a new query being
issued. This mechanism can be expected to be efficient when the next-page
rate ρ is very small, but not when ρ is high.

Full Precomputation (Baseline FP). A second baseline is to always com-
pute the top-nk results for some n > 1, so that the next n−1 pages are cached
following the initial query. The value of n might be tuned based on a log anal-
ysis of past user behavior, providing a trade-off between the initial overhead of
precomputing more detailed results, and the likely net savings. This approach
is also safe; the difference is that it can be expected to be efficient if the next-
page rate ρ is high, but a poor choice when ρ is low and the majority of users
are satisfied after viewing just a single page of results.

The remainder of this section describes three new methods, employing increas-
ing amounts of information calculated during the computation of the first page
containing the top-k answer.
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Fig. 3: Using a cyclic queue to track the k most recent heap ejections. The
pointer into the cyclic buffer records the current minimum value (part (a)).
When a document is ejected from the heap (part (b)), that minimum is over-
written with information about the ejected document and its score (part (c)),
and the pointer is incremented so that it addresses the new minimum value
(part (d)).

Retaining Ejected Documents (Method 1). The second results page
must be composed of ejected, denied, or bypassed documents; of these, the
ejected documents (the blue points in Figure 2) are the easiest set to exploit.
They had their correct scores computed during the first-page computation, and
were in the heap as “within the top-k so far” items at some point, suggesting
that they could be good candidates for the second results page. Moreover, they
are ejected from the heap in monotonically increasing score order, and hence
all that is required to track the highest-scoring ones is an array of k items (or
nk, if more than one possible followup page is being allowed for), cyclically
overwriting the oldest element in the array as each new element is ejected from
the heap (Figure 3). This additional record-keeping adds a minuscule overhead
to the first-page computation.

There is no basis to expect that a second results page built solely from the
k highest scoring ejected documents will be the same as would be constructed
by a top-2k retrieval (indeed, there might not even be k ejected documents
arise for any given query), and this approach is thus approximate.

Adding Denied Documents (Method 2). The denied documents have
also had their scores fully computed, and are another source of attractive
candidates for the second results page – for example, denied documents from
near the end of the computation can be expected to have higher scores than
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documents ejected early. The denied document scores are not generated in
score order, so to capture them a secondary top-k min-heap is used rather
than the previous cyclic array, with that second heap holding both the ejected
and the denied documents. That is, the primary heap, with entry value θ,
builds the first page of results; at the same time, the secondary heap, with
entry threshold θ′ < θ concurrently builds a second page of results.

The need for the secondary heap adds a small overhead to the first page
computation, but ensures that a better-quality pool of documents is retained,
should they be required. However, the second SERP is still approximate rather
than safe, because documents bypassed during the first-page computation
could have had scores high enough to be part of the second results page (see
Figure 2).

Adding Bypassed Documents (Method 3). Both previous methods gen-
erate a second results page very rapidly, based solely on information retained
during the first-page computation. By the end of that first-page computa-
tion the primary heap threshold θ has risen to become Θk; and at the same
time the secondary heap threshold θ′ has reached a smaller terminal value,
Θ′

2k ≤ Θk. If it could be demonstrated that Θ′
2k = Θ2k, then the approximate

second page could be certified as being safe. Unfortunately, all that can be
said in general is that Θ′

2k ≤ Θ2k ≤ Θk, with Θ2k unknown, and with the first
inequality holding because it is certain that there are 2k or more documents
with scores of Θ′

2k or more. Hence, if a safe second page is to be generated, any
bypassed documents that could score between Θ′

2k and Θk must be identified
and considered. To achieve that goal, the query must be re-processed against
the collection.

Two key observations allow the work required by that re-execution to be
substantially reduced compared to the OD baseline. The first is that the value
of Θ′

2k generated during the first-page execution provides a legitimate bound
with which to prime the heap threshold for the second-page re-computation.
That is, second-page query execution can be commenced with a reasonably
accurate initial under-estimate θ ← Θ′

2k of the true second-page threshold
Θ2k, thereby extracting the greatest benefit from whichever dynamic pruning
mechanism is being used.

The second observation is that it is not necessary to consider the entire
document range during the second-page execution. To see why, consider some
document with ordinal identifier dj that is a member of the first-page ejected
set. When dj joined the primary heap during that first-page execution, the
heap threshold at that time, θj , was less than the score computed for dj , that
is, θj < S(Q, dj), otherwise dj would have been a denied document. Because
of that relationship, every document di that precedes dj in the collection (that
is, when i < j) either had a score less than dj , with S(Q, di) < S(Q, dj); or, if
document di had a score greater than document dj , then di was in the primary
heap when dj was added, and, because its score was higher, remains in the
heap immediately after dj ’s ejection. That is, only documents that come after
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document dj in the collection ordering can have both a score greater than dj
and also be in the bypassed set.

Now consider the moment in the first-page execution at which dj is ejected
from the primary top-k heap. Suppose that the document that causes the
eviction is dm, where j < m. Immediately prior to the eviction we must have
had θm = S(Q, dj), and thus (because θ` is non-decreasing in `) that θ` ≤
S(Q, dj) for all j < ` ≤ m. In combination with the point made in the previous
paragraph, this second relationship means that any documents that both have
scores greater than S(Q, dj) and that are also in the first-page bypassed set
can only appear after dm. That is, dm, the cursor position in the document-
at-a-time processing scan at the moment dj is ejected from the primary top-k
heap, is the earliest that a bypassed document could have a score greater than
S(Q, dj).

Finally, consider the set of at most k documents identified via the sec-
ondary heap during the first-page execution, which is composed of a mixture
of ejected and denied documents with scores greater than or equal to Θ′

2k.
These documents can be added to the first-page top-k to initialize the second-
page execution heap of size 2k, and the heap entry threshold Θ′

2k. If the lowest
scoring document of that joint set, dj , is a denied document, then the most
recently ejected document with a similarity score < Θ′

2k is identified, and the
original top-k execution can be safely “resumed” at the point in which that
document was ejected, denoted dm, as all higher scoring documents that are
potentially missing in the top-2k must occur after that point. Similarly, if dj is
itself an ejected document, then the original top-k execution can be resumed
at the point in which dj was ejected, dm. Thus, it is sufficient to track only
the most recent k ejected documents from the first-page heap to locate this
resumption point. To do so, we re-introduce the cyclic array of k elements
during the first-page execution, now storing tuples 〈θj , dm〉 corresponding to
the most recent k ejected documents. Once a suitable restart point is identi-
fied, the second-page execution can proceed as a “resumption” of the first-page
execution, with an initialized heap of size 2k and an initial threshold of Θ′

2k.
Figure 4 illustrates the configurations being discussed. The first-page com-

putation is shown in the top part, with Θk and Θ′
2k being computed as by-

products of the standard top-k computation. As well, document dj is identified
during that first-page execution as being the least-score ejected element, and
it’s partner dm, the one that resulted in its ejection, is also noted. Hence,
document dm marks the earliest point in the document sequence at which any
documents with scores greater than S(Q, dj) might have been bypassed; with
dj determined as the highest-scoring ejected document that has a score less
than or equal to Θ′

2k.
The corresponding Method 3 second-page query execution is shown in the

bottom part of Figure 4. All documents prior to dm in the collection ordering
can be skipped without further consideration, because all previous documents
that were bypassed are known to also be bypassable in the top-2k retrieval
process that builds a safe second results page. And any required documents
that precede dm in the collection ordering that were not bypassed during the
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Fig. 4: First-page retrieval (top) and accelerated second-page retrieval (bot-
tom). Documents da and db were bypassed during the first-page retrieval, and
need to be scored during the second-page computation. Document dc would
have already be considered during the first page computation and retained as
a denied document; it does not get re-scored. Document de is bypassed during
both first-page and second-page retrieval.

first-page execution must have remained in the secondary heap that emerged
from it, and that is used to seed the second-page computation. Only documents
that were bypassed after dm was processed need to be re-examined and tested
against that secondary heap during the second-page computation.

As a final addition to this jigsaw, a bitvector over the document space can
also be added, to keep track of the documents that have already been scored in
the first-page execution. There is no need for them to be scored again during
accelerated second-page execution, and only documents that were bypassed
during the first-page process need to be scored, further reducing processing
costs.

4 Experiments

We now carry out a detailed experimental evaluation of the five second-page
retrieval mechanisms described in Section 3: two safe baselines (OD and FP);
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Fig. 5: Distribution of query length, in terms, across the three test collections.
Note that Gov2 and ClueWeb09B utilize the same query log.

two approximate second-page procedures (Method 1 and Method 2); and one
safe second-page mechanism (Method 3).

Data and Queries. Three collections are employed; Gov2 (approximately 25
million .gov documents); ClueWeb09B (around 50 million web documents);
and CC-News-En (around 42 million English news documents (Mackenzie et al.,
2020)). A query log was generated for the Gov2 and ClueWeb09B datasets by
selectively sampling 5,000 random queries from the TREC Million Query Track
(Allan et al., 2007, 2008; Carterette et al., 2009), such that there were 1000
queries of each length from one to four terms, and an additional 1000 contain-
ing five or more terms. For CC-News-En, a random sample of 5,000 queries was
taken from its temporally matched query log. After that initial sampling stage,
any queries with out-of-vocabulary terms were removed. Figure 5 shows the
distribution of the lengths of the test queries after sampling and then filtering.
The final query subsets are provided as part of the experimental codebase (see
Section 5).

Experimental Setup. The collections were indexed using Anserini with the
default stoplist and Porter stemming (Yang et al., 2018). The indexes were
next converted to the common index file format (CIFF) (Lin et al., 2020);
then reordered using the recursive graph bisection approach (Dhulipala et al.,
2016; Mackenzie et al., 2019); before being ingested by the PISA search system
(Mallia et al., 2019a), which was used for the remainder of the experimentation.
For all experiments, documents are ranked according to the BM25 (Kamphuis
et al., 2020; Robertson and Zaragoza, 2009; Trotman et al., 2014) model with
parameters k1 = 0.4 and b = 0.9 (Trotman et al., 2012). The exact BM25
formulation employed can be found in the PISA overview from Mallia et al.
(2019a). All experiments were performed entirely in-memory on a Linux ma-
chine with two 3.50 GHz Intel Xeon Gold 6144 CPUs and 512 GiB of RAM.
All reported query timings are the mean value of three independent runs, and
all our results pertain to top-10 evaluation, the most likely situation in which
“next page” requests must be processed.
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Gov2 ClueWeb09B CC-News-En

WAND BMW VBMW WAND BMW VBMW WAND BMW VBMW

Ejected 6.46 6.47 6.47 6.43 6.43 6.43 6.58 6.59 6.59
Denied 3.50 2.75 2.89 3.54 2.56 2.76 3.41 3.10 3.08
Bypassed 0.04 0.78 0.64 0.03 1.00 0.81 0.01 0.31 0.33

Table 1: Average number of documents in ranks 11 to 20 of exact top-20 rank-
ings across the three categories “ejected”, “denied”, and “bypassed” defined
with respect to the corresponding exact top-10 ranking for each query when
computed using three different dynamic pruning regimes.

Proof of Concept. The primary interest is in regard to query execution
time, which will be reported shortly. To set the scene for those results, Table 1
shows the breakdown of document types across the three collections and three
dynamic pruning techniques, categorizing the documents at ranks 11 to 20 in
safe top-20 rankings according to what happened in each corresponding top-10
execution, using three different dynamic pruning methods.

As can be seen, around two-thirds of the documents needed for a safe
top-20 ranking are from the ejected sets; and another quarter are from the
denied sets. Only a minority of the top-20 documents were bypassed during
the top-10 first-page retrieval. The more precise upper score bound estimates
generated by the BMW and VBMW approaches mean that a greater fraction of
the documents needed for second-page safety are bypassed by top-10 retrieval,
an observation which has also been made in connection with threshold predic-
tion for accelerated top-k retrieval (Petri et al., 2019). Indeed, their ability to
bypass more documents is exactly the attribute that makes those two meth-
ods faster for first-page retrieval. But even when that is taken into account,
Method 2 correctly captures, on average, more than nine of the ten documents
required for the second SERP, indicating that it can be expected to provide
efficient-yet-effective next-page retrieval regardless of which pruning technique
is used.

Figure 6 shows the scaled relative positions across the document space as-
sociated with each query at which the documents from each of these three
categories appear during processing, using the same three test environments.
Ejected documents are more likely to appear early in the traversal, when the
heap threshold is low, whereas denied documents tend to occur later in the
traversal, once the heap threshold is larger. Finally, bypassed documents occur
even later, when the heap threshold is close to its terminal value. By safely
skipping to the first point at which a valid second-page document may have
been bypassed, Method 3 is intended to avoid scoring many potential candi-
dates, accelerating the second-page retrieval process.

Quantifying Safeness. Both baselines, and Method 3, are safe. To measure
the relative safeness of Methods 1 and 2 in a meaningful way, and to avoid
issues associated by score ties (Lin and Yang, 2019; Yang et al., 2016), the
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Fig. 6: Relative positions in the query document space of documents in ranks
11 to 20 of the exact top-20 rankings across three categories defined by the
corresponding top-10 rankings when using VBMW dynamic pruning, expressed
as fractions of the union of the documents in the postings lists of the terms
associated with each query. Since the heap threshold increases as more doc-
uments are evaluated, most ejections occur early on, with more documents
being denied and bypassed later in the traversal.

following process was used. For each query, the documents in positions 11 to
20 of the safe ranking were divided into two groups: those with scores greater
than that of the 20 th document; and those with scores equal to it. Each
document in the first group was counted as a “+1” if it appeared anywhere
within ranks 11 to 20 of the approximate ranking, and zero otherwise. In
addition, a further “+1” was recorded for each document in the second group
if there was a corresponding document with the same score in the approximate
ranking, with the restriction that each document in the approximate ranking
could only be counted once.

The count for the query was then divided by ten, to get an equality-
insensitive overlap ratio, with 1.0 corresponding to “safe except for pertur-
bations in connection with score ties”, and 0.0 representing complete second
page mismatch. Those per query overlaps were then averaged over the query
sets to get system overlaps.

Selection of Pruning Mechanism. In a range of preliminary experiments
we measured all of WAND, BMW, and VBMW-based retrieval for top-10 and
top-20 retrieval across the three collections. In results that agree with similar
experiments carried out by others, we found that VBMW was consistently
fastest, and it is used throughout the results reported here.

First and Second Page Retrieval. Table 2 reports the mean latency for
each technique, split across the cost of first and second page retrieval. Of
the two baseline techniques, the OD (on demand) approach is the fastest to
generate a first page of results, and the baseline FP (full pre-computation)
the slowest, providing bookends to the palette of three further approaches de-
scribed here. Method 1 and Method 2, both approximate rather than safe for
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Mechanism
Gov2 ClueWeb09B CC-News-En

Page 1 Page 2 Ovlp. Page 1 Page 2 Ovlp. Page 1 Page 2 Ovlp.

Baseline OD 3.6 4.2 – 11.8 13.6 – 24.5 28.8 –
Baseline FP 4.2 0.0 – 13.6 0.0 – 28.8 0.0 –

Method 1 3.6 0.0 0.66 11.8 0.0 0.66 24.6 0.0 0.67
Method 2 3.6 0.0 0.94 11.9 0.0 0.93 24.6 0.0 0.97
Method 3 3.8 1.6 – 12.3 4.9 – 25.1 9.9 –

Table 2: First-page retrieval time and second-page retrieval time for five meth-
ods, and equality-insensitive overlap for the two non-safe methods. Times are
average milliseconds per query, with VBMW used throughout.

CCNews-EN

ClueWeb09B

Gov2

0.00 0.25 0.50 0.75 1.00
Position

WAND
BMW
VBMW

Fig. 7: Distribution of jump-start second page query resumption positions,
expressed as scaled fractions of the set of documents involved in the union of
the terms associated with each query. Higher resumption positions indicate a
larger relative volume of documents being safely skipped.

the second page, have negligible additional cost compared to the OD baseline,
and are equally fast to generate a first (safe) page of results. Both then gener-
ate second pages without further computation being required, with Method 2
giving a “closer to safe” outcome than Method 1, which only retains ejected
documents. These results confirm the outcomes presented in Table 1.

Method 3 generates a safe second page. To achieve that, it takes slightly
longer than baseline OD when processing the first page, but still much less
than baseline FP, and recoups that cost – plus more – via accelerated second-
page processing. The same patterns of relative performance occur in all three
test collections.

Jump-Starting the Second Page. Figure 7 helps explain the speed of the
Method 3 second-page computation. To generate the graphs, the set of doc-
ument numbers involved in each query was generated from the union of the
terms’ posting lists, and document numbers mapped in a uniform manner into
the range zero to one. The “resumption” document dm for each query was
similarly mapped to the same range, and expressed as a decimal value. For
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Collection Mechanism
Query second page request rate, ρ

1% 2% 4% 10% 20% 40%

Gov2 Baseline OD 3.7 3.7 3.8 4.0 4.5 5.3
Method 3 3.8 3.8 3.8 3.9 4.1 4.4
Baseline FP 4.2 4.2 4.2 4.2 4.2 4.2

ClueWeb09B Baseline OD 11.9 12.1 12.3 13.2 14.5 17.3
Method 3 12.4 12.4 12.5 12.8 13.3 14.3
Baseline FP 13.6 13.6 13.6 13.6 13.6 13.6

CC-News-En Baseline OD 24.8 25.1 25.7 27.4 30.3 36.0
Method 3 25.2 25.3 25.5 26.1 27.1 29.1
Baseline FP 28.8 28.8 28.8 28.8 28.8 28.8

Table 3: Combined querying cost, first two pages, for the three safe methods,
and a range of values of ρ. Times are calculated from the same data as used to
construct Table 2, and are expressed as average milliseconds per query, with
VBMW used throughout. Similar patterns were also observed for the other two
pruning approaches.

example, a value of 0.5 indicates that half of the document range was com-
pletely avoided during the Method 3 second page computation – that dm (see
Figure 4) was halfway through the union of the query’s postings lists.

As can be seen in Figure 7, for the small Gov2 collection, only about a
quarter of the document space is skipped, but for the two larger collections
it is respectively around one third, and around one half. Figure 7 also shows
how the more accurate document upper score bound estimates achieved by
BMW and VBMW give rise to the need for a slightly greater fraction of the
document range to be checked during second page computation.

Overall Querying Cost. The total time spent processing each query de-
pends on both the cost of first and second page retrieval, and also on ρ, the
fraction of queries for which a second page is requested. Table 3 uses the
same data as already presented in Table 2, but combines the first page cost
with a varying fraction of the second page cost, to get an estimated total per
query cost. Only the three second-page-safe methods are shown, as a basis for
comparison; with the best method shown in blue for each different value of ρ.

For low values of ρ, the cheapest overall approach remains to compute
(only) the top-10 at first, and not invest in any preparation for a possible
second page request. If, and only if, that request arrives, it is costly to process,
but when ρ is low the gamble pays off. Similarly, for high values of ρ, the
best overall approach is to pre-compute two pages, and have the second k
documents ready to dispense when the request arrives. In between, and slightly
better than either baseline for all three collections when ρ is in the range
≈ 4–20%, is Method 3, which adds a small investment to each first page
computation in order to greatly accelerate second page computations.
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Keeping It Simple. One potential drawback of Method 3 is the volume of
state data retained between every first page computation and a possible second
page request: the secondary heap; the cyclic array; and the bitvector showing
which documents have already been scored. The first two structures are very
small, at just ten elements each. But the bitvector might be large. For 50
million documents it requires that around 6 MiB per query be allocated and
held for some interval of time (perhaps minutes), a significant space imposition
that might well be better employed for other purposes.

If that space expenditure is regarded as being excessive but it is important
that the second-page ranking be safe (that is, if Method 2 cannot be used),
then an additional option is to compute the first page using Method 2, but
then only retain the k th largest score Θ′

2k from the secondary heap, a single
floating-point value per query. Then, if/when a second page is required for
that query, the floating point value can be used as an initial heap priming
threshold θ ← Θ′

2k for a full top-2k computation. This simpler approach also
outperforms both of the baseline approaches, but over a more restricted range
of ρ. For example, knowledge of the Method 2 Θ′

2k value allows (see Table 2)
the VBMW/CC-News-En second page computation time to be reduced from
28.8 milliseconds to 20.9 milliseconds, and hence if ρ = 10%, results in an
average per-query cost of 26.7 milliseconds, slightly better than both the OD
and FP baselines shown in Table 3.

Beyond Page Two. A natural question to ask is whether these techniques
extend to third (and further) pages. Clearly both baselines can continue to be
applied, albeit with mounting costs. It might thus be wiser to blend them, and
if/when a third page is requested, compute the documents at ranks 2k + 1 to
4k inclusive, so that the third and fourth pages are both ready; and if then a
fifth page is requested, to compute ranks 4k+ 1 to 8k in another pass through
the index; and so on. Regardless of how many documents are required, the
techniques described here – use of a cyclic array, a secondary heap, a bitvector
of evaluated documents, jump-start resumption, and heap threshold priming
– can be used in conjunction with any such processing, provided only that the
maximum depth k′ required to serve the next page (or set of pages) is known
at the time the current query is being processed.

In practice, a decreasingly small fraction of searches involve the user re-
questing a third page or beyond (see, for example, Figure 1), and diminishing
marginal gains can be expected from any acceleration mechanism. In particu-
lar, if third page requests occur with probability of the order of ρ2, and fourth
page requests with probability approximately ρ3, and so on, then avoiding
the retention of ever-increasing amounts of state information might be more
important than saving further slivers of computation time.

5 Discussion and Conclusion

Limitations and Future Work. The mechanisms we have proposed are not
without drawbacks. As already discussed, Method 1 and Method 2 produce a
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second result page with negligible further work required and with only small
amounts of extra space being required, but those second pages are not guaran-
teed to be safe; and that fact alone might be enough to rule these two options
out of contention for some applications.

Method 3 is safe, and for a range of values of ρ is faster than either of
the two baselines, but involves a substantial commitment of memory to each
query for the bitvector, and it is unclear whether that same memory could be
deployed in a different manner to achieve equal or greater query throughput
savings. For example, memory could equally well be used for answer caching,
thereby completely avoiding computation of some repeat queries; or could
be used to store certain frequently-accessed postings lists in partially decom-
pressed form. If so, it might be that simply retaining the secondary heap
threshold Θ′

2k from the first-page execution for each query, and using it to
prime the second-page heap, is the best option.

Another factor that affects the usefulness of this work is the increasing
tendency for retrieval systems to be implemented as a cascade of phases, with
a fast-but-blunt first phase based on BM25 and dynamic pruning used to
select (say) 1,000 documents, and then further phases of increasing complexity
applied to refine the document ranking and determine the final top-k listing
that gets presented to the user (Chen et al., 2017; Matveeva et al., 2006;
Wang et al., 2011). In such arrangements the user is not directly connected to
the underlying first-phase similarity computation, and a user-initiated request
for a second page of results might or might not translate into a fresh round of
activity in the first-phase retrieval engine. That is, our techniques are primarily
applicable only to situations in which a BM25-like computation is being used
in a single phase of retrieval to supply results pages directly to users.

We have focused on the usual DaaT retrieval mode. Other processing op-
tions are also possible, including Term-at-a-Time (TaaT) traversal and Score-
at-a-Time (SaaT) traversal. The techniques we have described do not directly
apply to these modes. However, the TaaT and SaaT processing strategies
may provide their own opportunities for accelerating next-page retrieval. For
example, both techniques generally store per-document scores in a large ac-
cumulator table, and retention of that table seems likely to provide a boost
to safe second page retrieval. It would be interesting to compare these differ-
ent arrangements head-to-head to improve the understanding of the intricate
trade-off space between them (Crane et al., 2017). Similarly, there are likely to
be index-independent optimizations which could be explored. One such exam-
ple is to build a classifier which can predict whether a user is likely to continue
to a second or third results page, and adjust the initial top-k computation ac-
cordingly, similar to the notion of pre-fetching links which are likely to be
clicked (White et al., 2017). We leave this idea for future investigation.

Conclusion. We have explored a range of interesting algorithmic issues con-
nected with the question of retrieving a second page of top-k results in search
applications. Three methods have been introduced, two of them simple ways
of approximating the second search page, and a third that undertakes a re-
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stricted re-scan to ensure that the second page of results is faithful to what
would be generated by a full top-2k mechanism. The key to bounding the ef-
fort required in the re-scan is to retain strategic state information during the
generation of the first page, thereby providing the second page retrieval with
a useful jump-start.

Experiments with three large text collections have shown that the new
score-safe approach fits neatly between two alternative baseline mechanisms,
and for a range of continuation probabilities ρ offers the solution that involves
the least total computational cost when first page and second page retrieval
are combined. The two non-score safe approaches can also be used if required,
with Method 2 in particular providing retrieval effectiveness (in terms of which
documents get presented to the user) that on average is in close agreement to
the second-page-safe alternatives.

We have also discussed the limitations that apply to our mechanism, and
acknowledge that these are restrictive. Nevertheless, we believe that there will
be situations in which users directly interact with a single-phase search system.
We also believe that innate algorithmic curiosity is served by this work, in
terms of responding to the question we posed in Section 1 as to whether or
not second-page retrieval can be accelerated by retaining information from the
corresponding first-page computation.

Software. The software that was developed during this work, and additional
data and tools, are available at https://github.com/jmmackenzie/next-page.
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