
1

Tradeoff Options for Bipartite Graph Partitioning
Joel Mackenzie – Matthias Petri – Alistair Moffat

Abstract—Web connectivity graphs and similar linked data such as inverted indexes are important components of the information
access systems provided by social media and web search services. The Bipartite Graph Partitioning mechanism of Dhulipala et al.
[KDD 2016] relabels the vertices of large sparse graphs, seeking to enhance compressibility and thus reduce the storage space
occupied by these costly structures. Here we develop a range of algorithmic and heuristic refinements to Bipartite Graph Partitioning
(BP) that lead to faster computation of space-reducing vertex orderings whilst continuing to apply the same broad algorithmic
paradigm. Using a range of web graph and information retrieval system index data as test cases, we demonstrate an implementation
that executes up to approximately four times faster than the baseline implementation we commenced with, while holding
compressibility approximately constant. We have also improved the asymptotic execution time of BP by replacing a sorting step by a
customized median-finding step.

Index Terms—Web graph, inverted index, graph clustering, document reordering, document clustering

✦

1 INTRODUCTION

The enormous scale of commercial activities in web-related
areas such as social media and internet search means that
even slender savings in computational costs – expressed as
processing effort and/or storage space – will generate sub-
stantial monetary and environmental payoffs. Minimizing
the resources required to carry out any given information
processing task is a challenge that has occupied researchers
and practitioners alike for the last several decades.

In this work we revisit the cost associated with storage
of large sparse graph structures, with an emphasis on two
important application areas: web graph storage, where the
focus is on the adjacency lists that record the connections
between web pages within crawled web data, as expressed
via hyperlinks from one page to other pages; and inverted
index storage, where the focus is on the postings lists that
record the occurrences of terms within crawled web pages
(and documents from non-web sources), and allow docu-
ments matching a set of query terms to be efficiently found.
These two storage challenges can both be thought of as large
sparse graphs, albeit with different overall properties; and
can be handled by similar approaches.

The atomic unit of a web graph G over N webpages
(documents) numbered 0 to N−1 is the edge or link, a record
⟨ds, dj⟩ that indicates that document ds (a “source”) con-
tains a hyperlink to document dj , with ds, dj ∈ [0 . . . N−1].
The set of links is usually stored as a collection of adjacency

• J. Mackenzie was with the School of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia at the time this work
was undertaken. He is now with the School of Information Technology and
Electrical Engineering, University of Queensland, Brisbane, Australia.
E-mail: joel.mackenzie@uq.edu.au

• A. Moffat is with the School of Computing and Information Systems, The
University of Melbourne, Melbourne, Australia.
E-mail: ammoffat@unimelb.edu.au

• M. Petri is with Amazon Alexa AI, Manhattan Beach, CA, USA.
E-mail: mkp@amazon.com

This paper is an extended version of work that was presented in preliminary
form as a Short Paper at the 2021 ACM SIGIR International Conference on
Research and Development in Information Retrieval, see https://doi.org/10.
1145/3404835.3462991.

lists, with As the set of documents reachable from ds, that
is, As = {dj | ⟨ds, dj⟩ ∈ G}. We can also regard the set
As as being ordered, so that, taking fs = |As|, it is also
possible to write As = {ds,i | 0 ≤ i < fs}, where ds,i
is the ordinal index of the i th document to which ds is
linked. In a web graph, the number of adjacency lists will be
equal to the number of documents; and if the total number
of edges across all adjacency lists is denoted M , we have
M =

∑N−1
s=0 fs.

The atomic unit of an inverted index for a document
collection D containing N documents numbered 0 to N − 1
is the posting, a record ⟨dt,i, ft,i⟩ that term t appears in
document dt,i a total of ft,i times, and that this is the
i th document in the collection in which t appears. The
postings list for term t, denoted Pt, is then the sequence
Pt = {⟨dt,i, ft,i⟩ | 0 ≤ i < ft}, where ft is the number
of distinct documents in which t occurs. If the terms t are
numbered from zero, 0 ≤ t < V , where V is the size of
the vocabulary of the collection, then the total number of
postings is given by M =

∑V−1
t=0 ft. Note that in an inverted

index V might be smaller than, equal to, or greater than N ,
whereas in a web graph it is normal to have V ≈ N .

With both As and Pt able to be stored in sorted form
without any loss of generality, it is usual to store the
document numbers as relative document gaps, or d-gaps in
short. For example, a postings list Pt can be stored as
Pt = {⟨dt,i − dt,i−1, ft,i⟩ | 0 ≤ i < ft}, with dt,−1 ≡ −1
for all terms t. Zobel and Moffat [1] and Pibiri and Venturini
[2] survey these various concepts and discuss inverted in-
dex representations. Similarly, an adjacency list As can be
stored as gaps ds,i − ds,i−1, again with ds,−1 ≡ −1 for all
documents s.

To reduce the cost of storing postings or adjacency lists,
integer compression techniques are applied to the d-gaps
[1, 2]. As a combinatorial lower bound, if the ft appearances
of term t in documents in D are a random subset of the N
documents that make up the collection (similarly, if the fs
links emanating from document s are to randomly-selected
other documents amongst the N pages in web graph G),

https://doi.org/10.1145/3404835.3462991
https://doi.org/10.1145/3404835.3462991

2

then the best that can be done when storing the docu-
ment gaps associated with t’s posting list is approximately
ft(log2(N/ft) + 1.5) bits. While this limit typically repre-
sents a considerable saving compared to 32-bit integers, it
can be further improved upon. In particular, non-random
term usage patterns arise in many document collections
because of the way the collections are constructed. For
example, “covid” is one of many terms that has had un-
precedented use over the last two years (as has the term
“unprecedented”), and will be tightly clustered in date-
ordered collections. Similar effects hold in adjacency lists:
documents in one web site are likely to link to other docu-
ments within that same web site via navigational assists and
commonality of topics, and to pages at other similar-topic
websites because of thematic connections. The outgoing
links from any given web page are far from random.

A range of integer codes have been devised that auto-
matically exploit such non-uniformity in target appearance
[1, 2]; as well as techniques for identifying decompositions
of postings (and hence, adjacency) lists into parts that can
be coded using localized parameters [3, 4].

To further minimize index space, researchers have also
explored methods for document reordering, permuting the
sequence of documents so as to actively facilitate non-
uniformity of d-gaps when considered in aggregate, across
all postings or adjacency lists. These techniques can be
thought of as performing a document clustering process that
collects together like documents – where “like” is defined
with respect to term usage for inverted indexes, and with
respect to out-link commonality for web graphs – and then
linearizes the clusters into a single sequential renumbering.

Our work in this paper takes the Bipartite Graph Partition-
ing (BP) mechanism of Dhulipala et al. [5] as a starting point
(described in detail in Section 2), and uses it as a foundation
on which to present four improvements:

• a moderation mechanism that suppresses repetitive cy-
cles and reduces the number of iterative passes needed;

• variant swapping-cost heuristics that result in more
resilient estimations and fewer swapping operations
being required;

• algorithmic changes to eliminate the sorting operations,
and hence improve asymptotic efficiency;

• a level-synchronized iterative version that reduces
inter-task contention and achieves better throughput
rates as a result.

We also provide an analysis of the parallelism that is possi-
ble in a BP implementation.

As an example of the considerable gains that have been
achieved, on the largest of the experimental document col-
lections the running time for computing the BP reordering
for an inverted index is reduced from 95 minutes to 26 min-
utes (3.7× faster), with no loss of compression effectiveness.
Full results appear in Sections 4 and 5.

Compared to our previous conference presentation of
this work [6], we add a detailed exploration of issues to do
with parallelism, bottle-neck analysis, and other implemen-
tation options that affect practical use; we include additional
experimentation to show the strong relationship between
loggap and compressed index size; we give a more detailed
treatment of both the background material and of the new
mechanisms that we describe; and our experimentation has

been expanded to include additional datasets drawn from
the more general web graph domain.

2 DOCUMENT REORDERING

This section introduces the bipartite partitioning technique
[5] for reducing storage costs associated with adjacency lists
and inverted lists. For simplicity of exposition we refer in
the main to postings lists, but as was noted in Section 1,
there are strong parallels between postings lists and adja-
cency lists, and any commentary in regard to one can be
assumed to also apply to the other.

2.1 Motivation and Background

Document reordering re-assigns the underlying document
identifiers so as to minimize the cost of storing the post-
ings lists gaps, and is based on the observation that most
compression codecs are more effective over dense regions
of small gaps [7, 4, 8] than they are when handling the same
number of approximately equal-sized gaps. Reordering is
applied during the offline indexing phase of a search system
as one of the more costly indexing phases [9]. Further-
more, document reordering can improve query through-
put [10, 11, 12, 13, 14, 15], with newer schemes jointly
optimizing for both index space consumption and query
throughput [16].

Reordering techniques seek to cluster like documents to-
gether in the identifier space, to create – in aggregate, across
the whole index – dense regions of term occurrences in the
postings lists, and hence small gaps. One simple technique
is to order the documents lexicographically by their URLs
[17], on the basis of documents from the same domains
likely to be topically coherent. More advanced techniques
estimate pairwise document-to-document similarities, and
then apply heuristic cost-based traversals in order to achieve
clustering [18, 19, 20, 11]. Web graphs can also be reordered
by URL or other unique document descriptor, provided the
selected identifier relates to the origins of each document.

Dhulipala et al. [5] and Mackenzie et al. [21] give detailed
coverage of document reordering techniques in the context
of web graphs and inverted indexing, respectively. A range
of other investigations should also be noted [22, 23, 24, 25,
26, 27, 28].

2.2 Measurement

Experimentally, document reordering techniques can be
compared directly, according to the size of their compressed
outputs. But different compression approaches have differ-
ent strengths. To measure clustering effectiveness in a way
that is independent of specific compression techniques, the
average cost of storing a single document gap describing
a single edge in an adjacency list, or a single posting in a
postings list, can be computed using a loggap estimation,
the mean binary logarithm of all gaps across all of the
documents in all of the lists [5, 21]:

loggap(D) =
1

M
·

 ∑
0≤t<V

∑
0≤i<ft

log2(dt,i − dt,i−1)

3

1: function reorder collection(D,N):
2: // reorder D[0 . . . N − 1] by partitioning into two
3: // halves and then recursing on the halves
4: if N > min size then
5: partition collection(D,N)
6: reorder collection(D[0 . . . N/2− 1], N/2)
7: reorder collection(D[N/2 . . . N − 1], N −N/2)

Fig. 1: Overview of the bipartite partitioning (BP) process.

where D is the collection of documents, V is the number
of distinct terms, and where loggap(D) provides an aspira-
tional compression target in units of “ideal bits per gap”. We
make use of loggap as an estimator of cost for both adjacency
and postings lists, after first demonstrating in Section 3
that loggap is indeed correlated with the effectiveness of
various compression codecs (see also Dhulipala et al. [5]).
Where appropriate we also report exact compressed sizes in
Gibibytes.

2.3 Bipartite Partitioning

In 2016 Dhulipala et al. [5] introduced a new way of viewing
the document reordering problem. Their Recursive Bipartite
Graph Partitioning (BP) approach is introduced in Figure 1,
which presents the overall recursive structure. As can be
seen, the algorithmic pattern employed is a hybrid between
Quicksort and Mergesort, in that the local work in each
recursive call is performed prior to the two recursive calls,
as is the case with Quicksort, but the recursive calls operate
on strict halves, as is the case with Mergesort.

Figure 2 then presents the details of the “local work”
component, which partitions D into two halves, and then
identifies document pairs that can be usefully swapped
between them. There are three distinct phases shown in
Figure 2. First, term statistics are collected for the two
halves (“left”, DL; and “right”, DR) of the current document
collection D, as if separate inverted indexes were being
built, see steps 4–8 in Figure 2. Then two bias values are
computed for each term (steps 9–10), estimating the change
in index size that would accrue – measured in negative or
positive loggap bits – if one posting for that term was to be
moved from the left half of the collection to the right half
(the l2r bias), and symmetrically, if one posting was to be
moved from DR to DL (the r2l bias).

In our presentation those bias values have polarity in-
dicating the “preference” exerted by each term. A negative
t.l2r bias indicates that instances of t in documents already
in DL prefer to stay where they are, if possible; whereas
negative t.r2l bias values indicate that instances of t in
documents in DR will try and “pull” their documents to the
left. Similarly, positive bias values exert rightward pressure:
a t.l2r bias that is greater than zero indicates that left-side
documents containing t will come under pressure to shift
right into DR; and t.r2l bias > 0 indicates that documents
in DR containing t will possess inertia, and be resistant to
changing sides and switching to the left.

In the second phase the term biases are accumulated
on a per-document basis (steps 12–14) using l2r bias for
documents in the left collection and using r2l bias in the

1: function partition collection(D,N):
2: // first, partition D[0 . . . N − 1] into left half DL and
3: // right half DR and compute local term frequencies
4: set DL ← D[0 . . . N/2− 1] and DR ← D[N/2 . . . N − 1]
5: set iter← 0 and swaps← false
6: for each term t appearing in any document in D do
7: compute t.lfreq and t.rfreq, the occurrence
8: counts of t in DR and DL respectively
9: use t.lfreq and t.rfreq to compute t.l2r bias and

10: t.r2l bias, the “attraction” of t to DL and DR

11: // second, compute document biases from term biases
12: for d ∈ DL do
13: set D[d].bias←

∑
{t.l2r bias | t ∈ D[d]}

14: repeat steps 12–13 for d ∈ DR and using t.r2l bias
15: // third, swap pairs of documents between DL and DR

16: // when a net gain in bias can be achieved
17: for suitable candidate pairs dℓ ∈ DL and dr ∈ DR do
18: if D[dℓ].bias > D[dr].bias then
19: exchange D[dℓ] and D[dr]
20: set swaps← true

21: if swaps and iteration limit iter < L then
22: set iter← iter + 1 and swaps← false
23: repeat again from step 6

Fig. 2: Details of the BP process. Negative term and doc-
ument biases represent attraction to the left-half collection
DL; positive term and document biases indicate affinity
with the right-half collection DR. If swaps can be identified
that yield a net gain (steps 17–20), they are carried out. The
way in which document pairs are selected at steps 17–18,
and the role of the iteration limit L at step 21 are discussed
in the text.

right. Each document bias value is also signed, with polarity
indicating where – in aggregate – the terms contained in that
document would like to push or pull the document. Nega-
tive document biases indicate documents that should either
stay in DL or be moved left into DL; positive document
biases indicate documents that should either remain in DR,
or be moved right to DR.

Finally, in the third phase, any document pairs that gen-
erate a net overall saving in loggap are exchanged between
the two sides (steps 17–20), seeking to explicitly optimize the
index storage cost. The signs on the document biases, and
the test at step 18, ensure that all such document exchanges
do indeed reduce the estimated summed cost of the indexes
for DL and DR, and hence reduce the estimated cost for the
combined index D that is generated when the DL and DR

indexes are concatenated.
Exchanging documents alters the term frequencies and

hence erodes the quality of the bias estimations. To update
the biases and retain estimation precision, the whole process
is permitted to iterate as many as L times (step 21) before
recursing (see Figure 1) into the two halves. The role of L is
discussed in more detail below.

2.4 Signed Bias Values
Our presentation here differs from that of Dhulipala et al. in
one important way: negative bias values in Figure 2 always

4

indicate terms (and hence) documents that are “attracted”
to the left half; conversely, positive biases always indicate
terms and documents that have greater affinity with the
right half of the collection. Hence, the test D[dℓ].bias >
D[dr].bias at step 18 only allows document pairs where
document dr currently in the right half has a weaker affinity
for the right than does dℓ, and can be displaced leftward by
dℓ with a net bit saving given by D[dℓ].bias−D[dr].bias. Note
that this relationship holds regardless of the actual signs of
D[dℓ].bias and D[dr].bias.

The reason for this change in representation, and the
process for selecting document pairs to be swapped, are
discussed in more detail below.

2.5 Complexity Analysis

For an index (or web graph) containing M postings (or
edges) over N documents the running time is O(M logN +
N log2 N) [5, Theorem 2], provided that L is taken to be
a constant. Alternatively, if L is also regarded as being a
parameter of the algorithm, then the running time should
be expressed as O(LM logN +LN log2 N). For brevity, we
continue here with the former representation, and for the
most part omit L when presenting analyses.

The O(M logN) first component covers the O(M) cost
in Figure 2 of counting the left and right term frequencies by
traversing a “forward” representation of the input (steps 6–
8). The second pass through the forward index to compute
the document biases (steps 12–14) is also O(M) at each
recursive call. But in both cases M is the local value, specific
to that particular call to function partition collection(). When
summed across all of the recursive calls that co-exist at
each level of recursion the total cost is O(M) still, with M
now the global value, a similar argument as applies in the
analysis of Mergesort. Moreover, there are exactly log2 N
levels of recursion, also as is the case with Mergesort.

The O(N log2 N) second term in the analysis of Dhuli-
pala et al. is the cost of sorting the sets of computed docu-
ment biases as a prelude to step 17. Assuming that the sets
D[dℓ].bias and D[dℓ].bias must be fully sorted, O(N logN)
time is required in each recursive call, where N is the local
value. Across each of the recursive levels, that cost sums to
O(N logN) time, where N is now the global value. Since
there are logN recursive levels, the total sorting time is
O(N log2 N).

The relationship between M and N plays a key role
in this analysis. In an inverted index M/N is the average
number of distinct indexed terms per document, with 100
at the lower end of the typical range, and 1000 being
toward the upper end. On the other hand, in web graphs,
M/N is the average number of hyperlinks per page, with
M/N = 10 perhaps typical, and M/N = 100 relatively
rare. The range of values expected is important, because
the relativity between M/N and logN affects which of the
two terms O(M logN) and O(N log2 N) is asymptotically
dominant. As was noted earlier, this analysis treats the
iteration cap L (step 21 in Figure 2) as a constant. If instead L
is viewed as a variable, the two components of the execution
time are O(LM logN) and O(LN log2 N).

3 EXPERIMENTAL SETUP

This section describes the hardware and data resources em-
ployed in our experimentation. It also reports preliminary
experimentation in which we confirm the relationship be-
tween the bit rates achieved by integer compression codecs
and the approximations provided by the loggap estimator.

3.1 Hardware and Software
Our experimental software was implemented in Rust and
compiled with rustc 1.49 using a high level of optimiza-
tion settings. All experiments were conducted in-memory
on a Linux machine with two 3.50 GHz Intel Xeon Gold
6144 CPUs and 512 GiB of RAM. Parallel processing was
managed via the Rayon crate,1 which uses a work-stealing
thread pool to manage concurrency. A total of 32-threads
were employed during the document bias computations, for
sorting, and for recursive calls. Issues to do with parallelism
are considered in detail in Section 5.

3.2 Datasets
The experiments make use of four publicly available graphs,
all of which are converted to unweighted bipartite graphs.
We then employ these unweighted bipartite graphs as the
basis for all experimentation and measurement:

• Enron: An email communication network from the now
defunct Enron company.2

• Facebook: A social network of user-to-user links from
the New Orleans Facebook network circa 2009 [29].

• Google: A hyperlink network from Google. The data
was released in 2002.3

• LiveJournal: A social network of user-to-user links from
the LiveJournal site in 2006 [30].4

Note that our normalization process yields different statis-
tics to those reported by Dhulipala et al. [5, Table 1], and
means that numeric values should not be compared across
the two papers. In terms of index data, three publicly
available text collections were processed to extract inverted
indexes using Anserini [31]:

• Wikipedia: A snapshot of English Wikipedia articles
from mid 2018.

• Gov2: A crawl of .gov domains from 2004.
• CC-News-En: A snapshot of English news documents

from the Common Crawl between 2016 and 2018 [32].
As was also the case with other work on reordering

of inverted indexes, short postings lists (fewer than 4096
elements) and long postings lists (more than 0.1N ele-
ments) were not taken into consideration when processing
the four text collections [5, 21]. However all postings lists
were included in the subsequent loggap and index size
measurements. After that pre-processing, both graphs and
text collections were represented using the common index
file format [33]. Table 1 lists various parameters for the seven
experimental datasets, including the derived value M/N ,
which for the web graphs is (with one exception) ≤ log2 N ,
and for the indexes (even after suppression of very rare and
very common terms) is > log2 N .

1. https://github.com/rayon-rs
2. https://snap.stanford.edu/data/email-Enron.html
3. https://snap.stanford.edu/data/web-Google.html
4. https://snap.stanford.edu/data/soc-LiveJournal1.html

https://github.com/rayon-rs
https://snap.stanford.edu/data/email-Enron.html
https://snap.stanford.edu/data/web-Google.html
https://snap.stanford.edu/data/soc-LiveJournal1.html

5

TABLE 1: Datasets and their parameters as used in the BP
computation, that is, after normalization. For web graphs,
“nodes” are webpages, the “vocab” is the set of hyperlink
targets, and “edges” are hyperlinks. For inverted indexes,
“nodes” are documents, the “vocab” is the set of terms, and
“edges” are postings. Density is computed as M/N , the
mean number of out-edges per page for web graphs, and
the mean number of postings per document for indexes.

Collection Nodes, N Vocab, V Edges, M Density, M/N

Enron 3.67×104 3.67×104 3.68×105 10.0
Facebook 6.37×104 6.37×104 1.63×106 25.6
Google 7.39×105 7.15×105 5.11×106 6.9
LiveJournal 4.31×106 4.49×106 6.90×107 16.0
Wikipedia 5.55×106 1.24×104 5.14×108 92.6
Gov2 2.50×107 4.53×104 3.28×109 130.9
CC-News-En 4.35×107 7.89×104 8.78×109 202.0

3.3 Calibrating the Measurements
Our first experiment documents the high correlation be-
tween loggap and true compression rates, to confirm the
relationship also recorded by Dhulipala et al. [5]. The four
panes in Figure 3 show the application of four different
compression codecs to several different versions of each of
the seven test files, which, as already noted, cover four web
graphs and three inverted indexes. The four methods are the
Binary Interpolative Encoding approach of Moffat and Stu-
iver [7]; the Partitioned Elias-Fano method of Ottaviano and
Venturini [4]; the SIMD-BP128 code devised by Lemire and
Boytsov [34]; and the StreamVByte approach of Lemire et al.
[35]. Each makes different tradeoffs between compression
effectiveness and operational throughput, and collectively
they represent the current state of the art [2].

The pattern within each pane is clear: regardless of the
dataset, and regardless of the ordering into which it is
permuted, there is a strong correlation between the loggap
measurement and the compression effectiveness achieved
by that codec. Note also that the loggap measurement is
always an under-estimate of the actual compressed size, and
that the difference between trend effectiveness (the shaded
confidence intervals) and the red lines indicated by the
aspirational loggap measurements indicate how close that
codec comes to being “impossibly perfect”.

In a side experiment, we also computed the cost of
storing the graphs with the Webgraph framework [22] (also
known as the BV representation); and, as did Dhulipala
et al. [5, Figure 8] before us, found it to be highly correlated
with loggap. We thus report only loggap here, concluding
that it can indeed be used as a codec-independent surrogate
measurement for compressed size.

3.4 Baseline Systems
Our primary goal in this work is to focus on variants of
the BP mechanism described by Dhulipala et al. [5], noting
that Dhulipala et al. (in their Table 2) compared against a
cross-section of other earlier graph reordering mechanisms,
and found that BP performed consistently well. However,
as simple reference points, we also include results for ran-
domly ordered collections and URL-ordered collections, to
highlight the additional gains that BP is capable of achiev-
ing.

4 FASTER ESTIMATOR HEURISTICS

This section describes the estimators used for t.l2r bias and
t.r2l bias that are assumed in Figure 2, which are computed
from t.lfreq and t.rfreq, the frequencies of term t in D.L
and D.R respectively. We start by describing the method
proposed by Dhulipala et al. [5], and then introduce two
approximations to those computations, along with our ra-
tionale for considering them.

4.1 Estimating Bias
Dhulipala et al. [5] observe that a uniformly-random post-
ings list of ft document gaps over an N -element universe
contributes approximately

B(ft, N) = ft (log2 N − log2(ft + 1)) . (1)

bits towards the numerator of the corresponding loggap
computation. As a consequence of that definition, Dhulipala
et al. go on to propose that the net bit gain Gl2r(·) associated
with one left-collection posting for a term t that initially has
ft,ℓ occurrences among Nℓ documents in the left collection
and has ft,r occurrences among Nr documents in the right
collection, be computed by taking the bit difference between
the left and right “before” configurations, and the left and
right “after” configurations:

Gl2r(ft,ℓ, Nℓ, ft,r, Nr) =

B(ft,ℓ, Nl)−B(ft,ℓ − 1, Nl)

+B(ft,r, Nr)−B(ft,r + 1, Nr) .

(2)

The reader is reminded that in our formulation (see Sec-
tion 2.4) negative values indicate that postings for this term
have a preference to remain in the left collection, and pos-
itive values indicate that switching the posting to the right
collection will be beneficial. A symmetrical computation
applies if a single posting originally in the right collection
DR were to be (hypothetically) swapped left into DL. In
combination, the two required definitions then emerge:

t.l2r bias = Gl2r(ft,ℓ, Nℓ, ft,r, Nr)

t.r2l bias = −Gl2r(ft,r, Nr, ft,ℓ, Nℓ) .
(3)

While accurate to the cost model captured by Equation 1,
Equations 2 and 3 have a drawback that becomes increas-
ingly problematic as the partitions get smaller. Suppose that
(say) Nℓ = Nr = 20, and consider a term t with (say)
ft,ℓ = ft,r = 1. Then Gl2r() yields a t.l2r bias of +1.17 bits,
correctly suggesting that total index size will be reduced
if the left-collection posting for t can be swapped into the
right collection, to join the posting already in DR. But at
the same time, t.r2l bias is computed as being −1.17 bits,
to similarly indicate that total index size will be reduced
if the right-collection posting for t can be transferred into
the left collection DL. Hence, all other components being
equal (or, more precisely, being within 1.17 bits of being
equal), those two documents will be swapped, without the
estimated 3.34 bits of loggap saving being realized. Worse, at
the next iteration the same two documents will swap back
to their original positions, and will continue to flip-flop until
the iteration limit L is reached (step 21 in Figure 2).

Many other scenarios trigger similar repetitions, includ-
ing complex cycles of rearrangement that return to a pre-
vious configuration after several intervening iterations, not

6

r = 0.951 r = 0.940 r = 0.937 r = 0.910

Interpolative Partitioned Eias-Fano SIMD-BP128 StreamVByte

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
0

10

20

loggap

B
PI

 [
D

oc
s]

Enron Facebook Google LiveJournal Wikipedia Gov2 CC-News-En

Fig. 3: Compression effectiveness (in bits per document identifier) plotted against loggap for four distinct codecs, seven
collections, and a range of possible orderings (Random, URL (where applicable), Length, and BP). Each pane has a fitted
linear model (shown as a dashed line with shaded 95% confidence intervals) as well as the y = x line for reference. The
value at the top-left of each pane reports the value of Pearson’s r, shown as a dashed line

just two; nor is the problem restricted to the lower levels
of the recursive hierarchy, it can and does happen at any
level. Furthermore, tabulating all prior configurations and
checking for re-occurrences would add significant compu-
tational overhead. Wang and Suel [16] have also noted
the risk of endless swapping cycles. One of our goals in
this investigation was to reduce the opportunity for such
redundant computations to occur.

4.2 Avoiding Iterations: Cooling
As noted in Figure 2, Dhulipala et al. [5] propose that if
any document swaps are performed, the document gains
should be recomputed and checked for further swaps; with
a hard limit of L = 20 iterations (step 21 of Figure 2). But
if iterations in which little or no loggap reduction can be
avoided, faster overall execution should be possible.

We thus suggest that a simulated annealing-type mech-
anism be employed. With variable iter recording the current
iteration count, then rather than swap documents D[dℓ] and
D[dr] whenever D[dℓ].bias > D[dr].bias (step 18 in Figure 2),
we propose swapping only if D[dℓ].bias > D[dr].bias +
C(iter) that is, if the projected advantage across these two
documents is at least C(iter) bits, where the cooling function
C(·) satisfies C(0) = 0 and is monotonically increasing
thereafter. In the first iteration iter = 0, and there is no
change to the existing computation. But at each iteration
thereafter iter becomes larger, making it harder for doc-
uments to swap. This cooling process can be expected to
dampen the volatility of the gain scores, and thus stabilize
the computation.

In our experiments we make use of the simplest possible
cooling function, and take C(iter) = iter, making each
iteration’s swaps jump a hurdle that is one bit higher than
was required in the previous iteration.

4.3 Avoiding Iterations: Alternative Estimators
As a second way of moderating the number of iterations
carried out, we introduce two further estimators, seeking to
downplay the anticipated benefit in the important ft,ℓ ≈ ft,r
case, and thus suppress some of the unnecessary swaps.

Equations 1 and 2 provide a general estimator that makes
very few assumptions. But in the BP process described
by Dhulipala et al. the binary recursive structure means
that the left-half collection and the right-half collection will
always differ in size by at most one, that is, Nℓ ≈ Nr. The
first of the two new estimators is derived from Equation 2
by assuming that Nℓ = Nr (which means that many of
the terms in the previous expression cancel, making it
simpler to compute), and then applying the approximation
log2(1 + x) ≈ (log2 e)x ≈ 1.44x (which allows further
algebraic simplification, and avoids calls to evaluate loga-
rithms). Taken together these lead to the formulation:

Gl2r(ft,ℓ, Nℓ, ft,r, Nr) =

log2(ft,r + 2)− log2 ft,ℓ − 1.44/(ft,r + 1) .
(4)

The second new estimator then arises if it is further assumed
that the posting that transfers from DL to DR is moved at its
face-value cost prior to the move, that is, that the “before”
values ft,ℓ or ft,r remain the estimators that determine the
bit-cost of the moved posting, even though they will in fact
be altered by the move being carried out:

Gl2r(ft,ℓ, Nℓ, ft,r, Nr) = log2 ft,r − log2 ft,ℓ , (5)

in which log2 0 is taken to be zero. A useful side benefit of
these two approximations is a reduced number of floating-
point log2(·) evaluations: computing the two values de-
scribed by Equation 3 when Gl2r(·) is instantiated via Equa-
tion 2 involves six logarithms per term t; instantiation via
Equation 4 requires four; and instantiation via Equation 5
needs only two log2(·) evaluations.5

Equation 5 is the only estimator of the three that is
symmetric, with t.l2r bias = −t.r2l bias. Table 2 provides
example values of t.l2r bias and t.r2l bias for the original
and the two new estimators, fixing Nℓ = Nr = 20, and
considering nine different combinations of ft,ℓ and ft,r.

5. Or a corresponding number of lookups if the logarithms are
memoized into a pre-computed table. In all of our BP implementations
values of log2 x for x < 4096 are pre-computed, saving approximately
20% of the running time for the baseline BP version, and lesser fractions
for the other two estimators.

7

TABLE 2: Values of Gl2r() and hence t.l2r bias as calculated
via Equation 2 (from Dhulipala et al. [5]), Equation 4, and
Equation 5, with Nℓ = Nr = 20 and for a range of term
frequency pairs ft,ℓ and ft,r . Note that Equation 5 gives
matching negated values when the ft,ℓ and ft,r inputs are
swapped, whereas Equations 2 and 4 are not symmetric.
When x is zero we take log2 x to be zero.

ft,ℓ ft,r Equation 2 Equation 4 Equation 5

1 0 0.00 −0.44 0.00
1 1 1.17 0.86 0.00
1 2 1.83 1.52 1.00
2 2 0.66 0.52 0.00
2 3 1.12 0.96 0.58
2 5 1.75 1.57 1.32
5 2 −0.81 −0.80 −1.32
3 10 2.01 1.87 1.74

10 3 −1.41 −1.36 −1.74

4.4 Experiment: Estimators and Cooling

To assess the effectiveness and efficiency of the three es-
timators, and of the proposed cooling process, we com-
pared them experimentally using the seven test collections
described in Section 3.2. Table 3 lists the results, with
effectiveness measured using loggap index cost (bits per
posting), and efficiency as the time (elapsed seconds in
the test environment, see Section 3.1) required to effect the
reordering.

Three baseline document orderings were used as refer-
ence points, and are shown in the first three rows of the
table: a randomly generated ordering (denoted Random);
a URL-sorted ordering that is only applicable to the three
inverted indexes; and a Length-based ordering, in which
the documents are sorted by decreasing out-link count (web
graphs) or by decreasing postings count (indexes). Note
how both the URL and Length reorderings already give
markedly superior compression effectiveness compared to
Random.

The fourth row of Table 3 shows compression effective-
ness and computation time for our reference implemen-
tation of the BP mechanism, following the description of
Dhulipala et al. (Section 4.1). Input order does not have
any great influence on the experimental outcomes, but for
definiteness, the starting point for the BP measurements
was always Length-ordered input for the four web graphs,
and always URL-ordered input for the three inverted in-
dexes. As a further external reference point, our measured
throughput for the BP baseline in the fourth row of Table 3
is comparable to that of the optimized codebase described
by Mackenzie et al. [21].

The remaining five rows in Table 3 then show all com-
binations of the cooling process (Section 4.2) and the two
alternative estimators (Section 4.3). Cooling results in only
slight loss of compression effectiveness on the web graphs,
and almost no loss on the inverted indexes. Use of the
alternative estimators brings more substantial compression
degradation for the web graphs, but again has little or no
effect on compression effectiveness on the inverted index
data. On the other hand, both enhancements decrease exe-
cution times, and represent useful new options in the Pareto
tradeoff space between effectiveness and efficiency.

LiveJournal Gov2

0 5 10 15 20 0 5 10 15 20
0

50

100

150

Depth

D
oc

um
en

t M
ov

es
 [

%
]

Eqn. 2 Eqn. 4 Eqn. 5

LiveJournal Gov2

0 5 10 15 20 0 5 10 15 20
0

5

10

15

 20

Depth
N

o.
 It

er
at

io
ns

Fig. 4: Total number of documents moved at each recursive
level, summed across all partitionings and iterations at that
level, and then expressed as a percentage with respect to
the total number of documents in the collection (top); and
the average number of iterations in the set of recursions that
take place at each level (bottom). Red-shaded points corre-
spond to non-cooled methods; blue-shaded points show the
addition of cooling.

Overall, the best tradeoff combination for web graphs
appears to be estimation via Equation 2 together with cool-
ing; and estimation via Equation 5 with cooling is the best
combination for inverted indexes. The speed gain in the
latter case is substantial – in combination the two factors
reduce execution time to around 20–25% of the baseline BP
implementation, with less than 1% of compression degrada-
tion introduced.

Table 4 gives total iteration counts summed across all
of the recursive calls to function partition collection() (Fig-
ure 2), discounted for each recursive depth d by a factor
of 2d−1 to account for the fact that the iterations become
cheaper as d increases, and then expressed as percentages
of the same workload counts arising from the reference BP
implementation (the fourth row of Table 3). The goal here
is to assess workload by counting the “equivalent full-level
iterations” required for each of the methods. As can be seen,
both of the new estimators cut down the number of depth-
adjusted iterations, and then the effect of the cooling process
is additive. In the final column, between 50% and 80% of
the original reordering effort has been bypassed, broadly
matching the time savings shown in Table 3.

Figure 4 provides a further breakdown of some of this
information, plotted as a function of increasing recursion

8

TABLE 3: Effectiveness (loggap bits per doc-gap) for three different initial document orderings and the baseline BP
implementation, plus five enhanced BP versions, with time in elapsed seconds. Note that URL-based ordering cannot
be applied to the four graphs. The best values in each of the columns are highlighted in blue.

Enron Facebook Google LiveJournal Wikipedia Gov2 CC-News-En

loggap time loggap time loggap time loggap time loggap time loggap time loggap time

Random 8.98 – 9.33 – 13.79 – 15.68 – 5.38 – 5.75 – 3.71 –
URL – – – – – – – – 5.00 – 2.33 – 1.51 –
Length 5.63 – 7.75 – 9.56 – 13.02 – 4.29 – 2.36 – 1.59 –

BP, Eqn. 2 4.53 1.0 4.76 1.3 4.01 24 7.51 565 3.33 360 1.83 1967 1.29 5674
+Cooling 4.56 0.4 4.78 0.7 4.00 14 7.65 510 3.31 223 1.82 1475 1.28 4889

BP, Eqn. 4 4.61 0.7 4.85 0.7 4.02 21 7.82 491 3.30 150 1.82 1186 1.27 2954
+Cooling 4.70 0.2 4.93 0.4 4.08 13 8.08 441 3.32 77 1.82 794 1.27 2390

BP, Eqn. 5 4.82 0.2 5.01 0.4 4.16 14 8.23 446 3.37 92 1.84 557 1.29 1829
+Cooling 4.94 0.2 5.08 0.3 4.25 11 8.46 407 3.39 57 1.85 477 1.30 1535

TABLE 4: Depth-adjusted iteration fractions (% of baseline
BP) for different estimators, with and without cooling.

Collection No Cooling Cooling

Eqn. 4 Eqn. 5 Eqn. 2 Eqn. 4 Eqn. 5

Enron 75.1 37.4 31.5 24.3 20.2
Facebook 72.5 45.9 45.4 34.2 30.9
Google 91.1 48.2 55.3 43.1 28.4
LiveJournal 89.8 50.2 63.7 48.7 33.8
Wikipedia 76.3 58.3 48.9 33.0 29.1
Gov2 95.0 55.4 58.8 49.7 39.6
CC-News-En 84.7 66.0 76.7 64.5 52.8

level, and for one web graph and one of the text collections.
The two top panes plot the number of documents moved, as
a percentage of the number of documents in the collection,
and show that at the lower levels of the recursion a non-
trivial fraction of the collection gets moved, albeit relatively
short distances, and more so for index data than graph data.
The two lower panes show that cooling (the blue-shaded
points) has a useful benefit at all levels in the recursive
decomposition, reducing the number of iterations required
before a fixed-point is reached.

4.5 Experiment: Comparing Estimator Permutations

To provide another perspective on the document orderings
created by the three estimators (that is, Equations 2, 4,
and 5), Figure 5 visualizes the relative document orderings
generated for the Wikipedia inverted index. Each document
is placed as a very small point in the two dimensional space
corresponding to the two document orderings being com-
pared; where sufficiently many documents are placed near
each other, visible features emerge and can be discerned.
As can be seen, the three estimators create quite different
arrangements of the Wikipedia collection, with each visible
square block corresponding to a recursive call that yielded
a different decomposition. Equations 4 and 5 are more like
each other than they are like Equation 2.

4.6 Algorithmic Enhancement: Sort-Free Swapping

The focus of the previous few sections has been on reducing
the number of iterations required at each recursive call, in
order to reduce the overall execution time. There is also

Eqn. 2 vs. Eqn. 4 Eqn. 2 vs. Eqn. 5 Eqn. 4 vs. Eqn. 5

Fig. 5: Scatterplots of document orderings from three estima-
tors on the Wikipedia collection. Visible features emerge only
when a large number of documents occur in close proximity
to each other.

another way that the execution cost can be reduced, and
that is via algorithmic improvement – it is possible to replace
the O(N logN) sorting steps (see Section 2.5) by an O(N)-
expected time median finding step. When M/N is large, the
substitution has no asymptotic effect on the overall expected
time, but might nevertheless have a practical effect.

Consider Figure 2 again, and the emphasis we placed
on the polarity of the signs associated with the biases. In
our presentation, negative biases always indicate leftward
attractions, and positive biases always indicate rightward
attractions. That consistent relationship allows Figure 2 to
be implemented more economically than previously.

In the description of Dhulipala et al., and in the previ-
ous experimental investigations of BP by Wang and Suel
[16] and Mackenzie et al. [21], the “pair selection process”
required at step 17 has been effected by first computing all
the “l2r” document biases across DL, then all of the “r2l”
biases across DR, with those calculations arranged so that
positive values in both cases meant “this document would
like to swap sides if it can”. Each of those two sets of biases
was then sorted into decreasing order, and a “zip” operation
performed from largest to smallest, swapping in a pairwise
manner by taking one document from each of the sorted
lists until no net gain was possible. Those two sorting steps
account for the O(N logN) time factor that is required per
iteration and per recursive level.

Figure 6 illustrates a new approach that makes use of our
altered interpretation of the bias values. Now all document
biases have a standardized polarity and a common scale,

9

-2.8 1.3-9.5 -6.2 -0.5 6.1 -1.2 -1.41.1 1.4 4.8

-2.8 1.3-9.5 -6.2-1.2 -1.4 1.11.4 4.8

Le half of collection with biases
computed using t.l2r_bias

Right half of collection with biases
computed using t.r2l_bias

Document biases partitioned about the median

-0.5 6.1

Bitvector denotes which statistics to update

0 0 0 0 0 0 0 0 0 00

-2.8 1.3-9.5 -6.2-1.2 -1.4 1.11.4 4.8-0.5 6.1-0.5
0 1 0 1 0 0 0 0 011

S[]

0 1 0 1 0 0 0 0 011

Fig. 6: Median-finding in the bias array: before the iden-
tification of the median (top); after the median of −0.5
has been placed in its correct location (middle); and before
reconstructing the statistics in the left and right partitions
(bottom). The role of bitvector S[] is explained in the text.

and it is sufficient to identify the median bias m over
the whole set D, which then automatically separates the
documents in DL ∪ DR into ≤ m and ≥ m sets of the
same size. Now all of the document swaps arise as a natural
consequence of the median-finding process, ensuring that
the left half of D contains exactly the required set of “more
negative” document biases (in some order), and the right
half similarly contains the corresponding set of “more posi-
tive” document biases. The critical factor that makes this an
attractive change is that median finding requires only O(N)
expected time [36], removing a factor of O(logN) from that
component of the execution time. Given that M ≥ N as
a necessary condition on the inputs, the first term then
unambiguously dominates, and the overall execution time
(see Section 2.5) thus becomes O(M log2 N) on average;
or becomes O(LM log2 N) on average with the factor L
included, noting that L is common to both the previous and
the new implementations.

The drawback of the median-based approach is the need
for a bitvector S[] of size N to be maintained, with S[d]
recording whether document d is currently considered to be
a member of its original partition, or whether it has switched
sides. Each particular document might switch sides zero,
one, or more times while the median-finding is playing out.
Once the median has been identified it is a simple matter
to locate and exchange left-right pairs of documents d for
which both S[d] values have odd parity.

4.7 Experiment: Sorting or Selecting?

The baseline BP implementation includes two sorting calls
per iteration, both implemented as parallel (that is, multi-
threaded) functions using the flexibility afforded by the
experimental environment (see Section 3.1). Sorting is a
task that has a natural decomposition into subtasks, and
hence allows useful speedups in elapsed running time
when multiple processors are available. In contrast, median-
finding requires less computational work than sorting, but
is also less amenable to parallelism. It is thus an interesting
question as to whether replacing the two sorting steps by
a median-finding step will result in reductions in elapsed
(that is, wall-clock) processing times.

TABLE 5: Elapsed computation time (seconds, Equation 5,
with cooling).

ParallelSort SequentialSort FloydRivest

Enron 0.162 0.157 0.169
Facebook 0.347 0.339 0.350
Google 8.68 9.42 9.06
Wikipedia 58.6 66.4 59.7
LiveJournal 438 480 475
Gov2 490 560 448
CC-News-En 1590 1940 1640

The first column in Table 5 shows the time required by
that baseline configuration. The second and third columns
then show what happens when that arrangement is altered:
first, by using a sequential rather than parallel sort, to
demonstrate the time saving attributable to the parallelism
in the baseline sort; and second, when the sort is removed
and replaced by the Floyd-Rivest median selection algo-
rithm [36], which runs in O(N) expected time. Except for
the largest collection, the modest differences between the
first and second columns indicates that sorting is only a
small fraction of the total resource cost required during
reordering, confirming the discussion in Section 2.5 that
suggested that theO(M logN) term was likely to dominate
the O(N log2 N) cost of sorting, because of the underlying
relationship between M and N .

Comparing the second and third columns in Table 5
then shows that switching to the median-based approach
yields CPU savings on all but the two smallest collections.
The gain is smaller (or even non-existent) relative to the
parallel sort, but it should be noted that we are reporting
elapsed times, and embedded in the Floyd-Rivest approach
are unused threads that correspond to reduced computa-
tional effort. Those CPU savings might be spent on other
unrelated tasks if such tasks are available, but the lack of
within-task parallelism means that elapsed time savings
should not be expected. Comparing the first and the third
confirms that position – even when looking only at five
larger files for which CPU time savings can be achieved,
there are just two for which the use of median-finding makes
for smaller elapsed computation time. That is, the choice
between a sorting-based implementation or a median-based
implementation must be decided as a compromise between
efficiency of resource usage, and minimizing elapsed com-
putation time.

5 ENGINEERING CONSIDERATIONS

The final sequence of experiments explores a number of
engineering issues that arose as part of our investigation
into BP computations. In this section we narrow the focus
to one set of implementation options: the estimation of
Equation 5, with cooling in operation, and employing the
Floyd-Rivest median-based approach.

5.1 Excessive Parallelism
The experiments reported in Section 4 all employed the
greatest possible level of innate parallelism – each recur-
sive call was spawned as a new process, and within those
recursive calls, the gain computations and sort calls (where

10

R
ecursive

L-S Iterative

0 25 50 75 100

0

25

50

75

100

0

25

50

75

100

Execution [%]

To
ta

l W
or

k
[%

]
Depth, d

1

2

3

4

5

10

19

Fig. 7: Level-by-level performance tracking of the recur-
sive “maximally parallel” recursive BP implementation (top
pane, as described by Figure 1 and Figure 2, using Equa-
tion 5 estimation, cooling, and median-based swapping),
and the level-synchronized iterative version (bottom pane,
as described by Figure 8, with other options constant) when
processing the Wikipedia dataset. Seven different partition-
ing levels were selected and tracked through the course of
the two computations.

applicable, see Section 4.7) were also spawned as indepen-
dent tasks, so that the Rayon work scheduler was free to
pursue parallel execution if it had the capacity to do so. That
means that there were potentially many thousands of tasks
concurrently active and capable of being assigned to the
available physical processing threads, with some of the tasks
needing orders of magnitude more resource than others.

Profiling evaluations showed that such extreme levels
of disparate-sized parallelism could result in significant
contention bottlenecks. The top pane in Figure 7 illustrates
the consequences of this, using the Wikipedia dataset as an
example. Iteration commencement and completion times-
tamps were extracted for seven of the different partitioning
depths, and the progress through each of those level’s
total work was tracked, where “work” was counted via
completed iterations of the main loop in Figure 2, summed
across all that depth’s partitions. The recursive version is
slowed by very high levels on inter-level contention, with
the last of the level d = 4 partition delayed by an onrush
of tasks representing partitions at level d = 10 and beyond.
That imbalance can be tracked back to the early ending of
one of the d = 3 partitions, which releases the first of the
d = 4 partitions, and starts a rapid cascade of subsequent
tasks.

We explored two possible remedies. The first is to cut
down on the number of concurrent tasks spawned, shifting
from a fully parallel to a partially parallel mode. Instead of
allowing every set of term frequency and bias computations
to be executed as parallel tasks, we implemented sequential
counterparts of those operations as well. At the early levels

1: function reorder collection itr(D,N, d0):
2: // reorder D[0 . . . N − 1] by iteratively processing it
3: // as a hierarchical sequence of document sections,
4: // starting at the d0 th level of the hierarchy
5: set d max← ⌊log2(N/min size)⌋
6: set Q1 ← ⟨D[0 . . . N − 1], N⟩
7: for d← 1 to d max do
8: set Qd+1 ← []
9: for every ⟨D′, N ′⟩ in Qd paralleldo

10: if d ≥ d0 then
11: partition collection(D′, N ′)

12: set Qd+1 ← Qd+1 ∪
13: ⟨D′[0 . . . N ′/2− 1], N ′/2⟩ ∪
14: ⟨D′[N ′/2 . . . N ′ − 1], N ′ −N ′/2⟩
15: end parallelfor
16: // wait here for all parallel tasks at level d to finish

Fig. 8: The level-synchronized iterative implementation of
the bipartite partitioning (BP) process. All subtasks at level
d are permitted to execute in parallel; all subtasks at level d
must complete before any subtasks at level d+1 are initiated.

of recursion, the parallel versions of those functions were
called. Then, at some given depth d′ in the recursive de-
composition, the parallel calls were ended, and sequential
functions employed, thereby “bulking up” the separated
tasks into a smaller number of longer-duration activities. In
this partially parallel version the recursive calls themselves
(see Figure 1) continued to be issued in parallel at all
recursive levels.

The ideal is to have a task be available for any processing
thread that becomes vacant, but not so many that it risks
taking too long to select and assign a task compared with
the cost of executing it. We hypothesized that a suitable
transition point would be at d′ = log2 p where p is the total
number of processors available. That is, we expected d′ ≈ 5
to be an appropriate choice for our hardware. In fact d′ ≈ 10
was a better choice for most of the experimental datasets; we
comment further on this finding shortly.

5.2 Level-Synchronized Iterative Computation

The second possible remedy to limit the disparities in the
sizes of competing tasks was to reimplement the BP logic as
an level-synchronized iterative process, manipulating explicit
queues of pending “sections” of the collection D, in the
same way that non-recursive implementations of Mergesort
and Quicksort can be implemented via nested loops and a
queue. This approach is illustrated in Figure 8.

As each section of the collection is taken from the level-d
queue Qd (step 9 in Figure 8) it is split into two halves and
then reordered through document swaps using the previous
mechanism (step 11, which calls the function described in
Figure 2); and then the two half-sized tasks that result
are both appended to the Qd+1 queue, to be processed at
some later time (steps 12–14). At each iteration of the global
control loop (starting at step 7), all sections at the same
depth d in the recursion are handled in parallel and are

11

LiveJournal CC-News-En

1 2 4 8 16 32 1 2 4 8 16 32

2000

5000

10000

20000

200

500

1000

2000

Number of Processors, p

T
im

e
to

 R
eo

rd
er

 [
s]

Recursive Level-Synchronized Iterative

Fig. 9: Time to compute BP reorderings, plotted as a function
of the number of permitted processing threads. The solid
lines with squares represent the starting configuration: a
recursive implementation based on Equation 5 estimation,
with cooling, median-based reordering, and “maximal” par-
allelism. Dashed lines represent the addition of the partial
parallelism technique; and the solid lines with diamonds
indicate the use of the level-synchronized iterative imple-
mentation.

simultaneously active, with an explicit wait operation en-
forced at the end of that level-d batch (step 15) to ensure that
all depth d sections are completed before any d+ 1 sections
are allowed to become active. That is, a strict ordering is
imposed, with sections at the same depth in the recursion
tree permitted to execute in parallel with each other, but
not ever allowed to compete with sections at levels d− 1 or
d+1. This final BP implementation has no recursive function
calls, but if called with d0 = 1 will compute exactly the
same document reordering as the simpler implementation
we started with, shown in Figure 1. The purpose of the
additional parameter d0 is discussed in Section 5.5, below.

The lower pane in Figure 7 shows the benefits achieved
by this approach. There is now an orderly sequence of
work performed, stepping through the various sub-tasks in
a strictly level-order (breadth-first) manner. Moreover, more
than 25% of the recursive version’s elapsed execution time
can be saved.

5.3 Experiment: Controlling Parallelism

We compared the recursive and level-synchronized iterative
BP implementations, testing versions both with and with-
out partial parallelism (four methods in total), measuring
elapsed execution time as a function of the number of
processing threads that were permitted. Figure 9 shows
the results for one of the web graph inputs, and one of
the inverted index inputs. While some of the effects are
small (note that some of the lines in the graph are oc-
cluded), the recursive implementation clearly benefits from
the imposition of partial parallelism. On the other hand,
partial parallelism is only of limited benefit to the level-
synchronized iterative implementation, because the iterative
approach already explicitly ensures task size consistency
via the wait constraint that occurs once per level d. As

p
pr

oc
es

so
rs

1 2 3 4 5 6 7

Start-up period: log p cycles
2

Saturation period

Fig. 10: Stylized depiction of task structure in a parallel
BP implementation in which each problem of size M is
processed on p (shown here as p = 8) processors via two
parallel recursive calls of size M/2, with no other paral-
lelism employed. This diagram assumes that all subtasks
at each depth d complete before any at depth d + 1 com-
mence, and hence reflects the level-synchronized iterative
implementation.

was anticipated by Figure 7, the level-synchronized iterative
implementation is notably faster than the recursive version,
and also slightly faster than the partial parallelism variant
of the recursive implementation, possibly as a consequence
of a reduced volume of book-keeping overheads.

5.4 Parallel Processing Wastage
Another interesting aspect of the experiment in Figure 9
is the “imperfect” speedups attained when doubling the
number of available processors, especially between p = 16
and p = 32. Why does doubling the available computing
power only result in execution-time speedups of factors
between 1.0 and 1.3?

To understand what is happening, consider Figure 10. It
presents a highly stylized representation of how an input
of size M would be processed recursively on a pool of p
processors under the simplifying assumptions that the time
taken at each recursive call is O(M) (that is, taking only
the first term in the analysis, see Section 2.5); and that as
each partition is processed there is no further parallelism
possible. (As noted above, this is not the case, and in our
implementation parts of Figure 2 are in fact parallelized,
including term frequency counting and document bias cal-
culations.) In the diagram it is also assumed that the two
recursive calls are balanced in terms of M (whereas they are
actually balanced in terms of N); that the min size stopping
point shown in Figure 1 is also applied to M (rather than to
N); and that for now, min size = 1. The effect of increasing
min size is discussed shortly.

Given these assumptions, the top-level task requires M
steps of sequential computation, and then spawns two half-
sized jobs that each require M/2 steps of computation. Then,
when those two finish, four quarter-sized jobs are spawned,
and so on – a standard recursive structure that leads to
log2 M recursive levels, with a total of M “units of work”
across each recursive level. In this execution scenario there
would thus be M log2 M units of work required in total.
If all p processors could be busy at all times, and perfect
parallelism achieved subject to the assumptions listed, then
(M log2 M)/p units of elapsed time would be sufficient.
But the start-up period shown in Figure 10 adds a non-
trivial overhead, because during the start-up period there
must be idle processors. In the assumed scenario it is only

12

TABLE 6: Using Equation 6 and the preceding analysis and
assumptions to compute the elapsed duration counted in
nominal “time units”, together with the fraction of the total
processor capacity through that period that is productively
useful for the BP task, and the fraction that is wasted, for
different combinations of p and min size, and with M = 108.
The “useful” percentages are a lower bound on what occurs
in our BP implementations, and the “wasted” percentages
are an upper bound.

M p
min size = 1 min size = 16

Dur. %usef. %wast. Dur. %usef. %wast.

108 1 2.7×109 100.0 0.0 2.3×109 100.0 0.0
108 2 1.4×109 96.4 3.6 1.2×109 95.8 4.2
108 4 7.6×108 86.9 13.1 6.6×108 84.9 15.1
108 8 4.7×108 70.7 29.3 4.2×108 67.2 32.8
108 16 3.3×108 50.5 49.5 3.0×108 46.5 53.5
108 32 2.6×108 31.8 68.2 2.5×108 28.4 71.6

when p parallel recursive calls have been spawned that all
processors can be fully engaged, with that situation then
continuing until all of the required work has been completed
and the computation completes.

If there are p processors available, then under the sim-
plifying assumptions the start-up period must span the first
log2 p recursive levels, as shown in the figure. Moreover,
the start-up period is 2M(1 − 1/p) units long. Over the p
processors the total available processing capacity during the
start-up period is thus 2M(p−1) work units. But the simpli-
fying assumptions mean that only M log2 p units of useful
work are performed during those first log2 p levels, and so
the start-up period must contain w = 2M(p− 1)−M log2 p
units of unused processing capacity – or, more precisely,
processing capacity that cannot be usefully employed on
the BP computation, but can be deployed to other unrelated
computations if any are available.

With M log2 M units of useful work to be accomplished,
the total work capacity required during the computation
must be M log2 M +w, that is M(log2(M/p)+ 2p− 2). The
fraction of that time spent on useful computation is thus

log2 M

log2(M/p) + 2p− 2
. (6)

Given the restrictions imposed by the simplifying exam-
ples, this computation should be regarded as providing a
lower bound. Nevertheless, it is informative. Table 6 shows
the effect of Equation 6 when it is applied to values typical
of the test sets described in Section 3.2. When p = 1 there
is no wastage, and when p = 2 there is at most only a
modest amount of wastage. But once p ≥ 4 the wastage
rate potentially exceeds 10%, and for p ≥ 8, the wastage
might be in excess of 30%.

The situation is further exacerbated if min size is in-
creased. Doing so reduces the total amount of useful work
from M log2 M to M log2(M/min size), without affecting
the wastage that occurs during the start-up phase. That is,
the fraction of wastage must increase as min size increases.
The three columns at the right of Table 6 show the impact
of this relationship: processing duration decreases, but a
greater fraction of the total available computational power

LiveJournal CC-News-En

8 10 12 1.4 1.6 1.8
700

900

1100

1300

1500

200

210

220

230

loggap

T
im

e
[s

]

Random Length URL

Fig. 11: Trade-off curves between execution time and loggap
effectiveness when skipping the first d0− 1 recursive levels,
for d0 ∈ {1, 2, 3, 4, 5, 6}, with d0 = 1 at the top-left of
each curve and d0 = 6 at the bottom-right. The method
throughout is defined by Equation 5, with cooling enabled,
and the level-synchronized iterative implementation. This
heuristic is most effective when the initial configuration is
already ordered in some way.

is unused. All of the experiments shown in the earlier parts
of this paper used min size = 16.

5.5 Experiment: Reducing the Start-Up Period

The potential for non-trivial wastage, documented in Ta-
ble 6, also represents an opportunity: if the allocated re-
sources can be used more productively, then elapsed com-
putation times can be reduced. The obvious place to try for
savings is at the start of the computation, when the greatest
fraction of the processor pool is potentially unable to be
used, see Figure 10. Figure 11 shows one straightforward
way in which that can be done.

To create the two graphs in Figure 11, the level-
synchronized BP implementation (using Equation 5, cool-
ing, and median-based swapping) was executed in a d0 = 1
configuration, then a d0 = 2 configuration, and so on, where
d0 indicates which level of the hierarchical partitioning pro-
cess the BP mechanism is commenced at (see Figure 8). For
example, a d0 = 3 computation commences processing with
four quarter-collections, rather than one full collection; with
no document swapping ever considered across those three
section boundaries, and with hierarchical reordering com-
mencing in parallel within those four sections. Documents
initially far apart that might otherwise be placed near each
other can thus get “marooned”, meaning that compression
rates might be affected. But bypassing the work associated
with the first d0 levels of partitioning, and more importantly,
the potential resource wastage associated with them, might
yield a desirable tradeoff.

The two panes in Figure 11 show, respectively, a web
graph and an inverted index. Each curve is for a different
initial ordering of the collection, as discussed in connection
with Table 3. In the right-hand pane the inverted index
exhibits the behavior we seek: if all partitioning levels
are processed (the top-left ends of the three curves), the
BP computation yields excellent compression regardless of

13

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Depth

Fr
ac

ti
on

 o
f T

im
e

Facebook

Google

LiveJournal

CC-News-En

Fig. 12: Cumulative elapsed (wall-clock) time, as a function
of partition depth, and expressed as a fraction of final pro-
cessing time, with experimental settings equivalent to the
d0 = 1 curves in Figure 11. When applied to the LiveJournal
and Google datasets it is clear that relatively little of the
overall computation occurs in the first few levels, and that
the deepest levels are where the majority of the effort is
being expended.

the initial ordering, but is relatively slow. Moreover, if the
collection is in a random order, all partitioning levels need to
be processed to get maximum compression. But if the input
collection already has some appropriate ordering – URL be-
ing ideal – then multiple levels of partitioning can be safely
bypassed, resulting in substantial further time savings on
top of those already documented in previous experiments,
with almost no loss of compression effectiveness. Initial
ordering by Length is also an effective strategy.

The situation in the left pane of Figure 11 is more com-
plex. Starting with an ordered collection is still beneficial,
but the time savings are relatively small, do not continue
to accrue as d0 is increased, and the compression loss as
d0 grows is non-trivial. Figure 12 shows why that different
behavior arises. It plots cumulative wall-clock times as
the level-synchronized BP computation proceeds through
the levels, presented as fractions of total time. Two of the
four collections shown have a distinctly different execution
profile, and spend more time in deep computations than
they do at the early levels. For these two datasets the
assumptions made in order to undertake the analysis of
Section 5.4, and that are visualized in the neat regularity
of Figure 10, simply do not apply. On the other hand, CC-
News-En and Facebook do somewhat match the anticipated
computational structure, with the first few partition levels
the slowest ones – but still not to the extent suggested by
the simplified situation depicted in Figure 10.

5.6 Overall Gains

Table 7 summarizes the developments that have been pre-
sented in Sections 4 and 5. It compares the loggap com-
pressibility and processing time of the initial BP reference
implementation as documented in the fourth row of Table 3
with the final version we have arrived at in this section, with
values less than 100% representing “better”, and values
greater than 100% representing “worse”. This final version
of BP uses the level-synchronized processing strategy, uses

TABLE 7: Final compression effectiveness and elapsed com-
putation times, expressed as percentages (and multiplicative
speed equivalents) relative to our initial BP reference imple-
mentation shown in the fourth row of Table 3, and measured
for the level-synchronized iterative implementation using
Equation 5 estimation, cooling, and median-based swap-
ping.

Collection Relative Relative
effectiveness elapsed time

Enron 96.1% 6.1% (16.5×)
Facebook 102.2% 11.3% (8.9×)
Google 100.9% 16.9% (5.9×)
LiveJournal 104.0% 37.7% (2.7×)
Wikipedia 101.5% 11.6% (8.6×)
Gov2 101.8% 18.1% (5.5×)
CC-News-En 100.6% 24.0% (4.2×)

Equation 5 for estimation, uses the cooling strategy, and uses
median-based swapping. As can be seen, we have made
great strides in terms of reducing BP execution time, and
have achieved those gains at a very modest cost in terms of
loss of loggap compression effectiveness.

5.7 The Opposite Tradeoff

The majority of our work in this paper has focused on reduc-
ing execution times while – as far as possible – holding com-
pression effectiveness unchanged. But the tradeoff curve
between effectiveness and efficiency can also be extended
in the other direction.

As a final experiment, we revisit the values of min size
(the minimum size of each BP partition, which has the effect
of controlling the depth of the BP computation), and the
lower term frequency cutoff (the minimum term frequency
in the three inverted indexes, below which terms were
not considered during the reordering process). All of the
experiments reported above make use of min size = 16 and
a minimum frequency of 4,096 postings. We are interested
in the extent to which useful compression gains can be
achieved if those limits are decreased, and also in the
interplay between those two variables. Intuitively, when the
index partitions are very small, most of the term statistics
are likely to be similar, and hence will have relatively little
impact on the reordering process. However, if at the same
time we allow shorter lists to be considered, then BP may
be able to “squeeze” more compression out of the small
partitions, albeit by expending additional computation time.

To investigate these possibilities, we recomputed the
three inverted index reorderings without any lower term
frequency cutoff at all, and at the same time with min size
reduced from 16 to 8. Using the bottom row of Table 3 as
a reference point, compression could be improved by up
to 5%, but with pronounced increases in elapsed time: 12×
longer, 10× longer, and 8× longer for Wikipedia, Gov2, and
CC-News-En respectively. So, while slight improvements
in compression effectiveness are still possible, they are
achieved only with a concomitant – and rather dramatic –
increase in computational resources required.

14

6 CONCLUSION

We have carried out a detailed exploration of Dhulipala
et al.’s bipartite graph partitioning algorithm, and described
several enhancements that allow the execution time to be
reduced with little or no reduction in effectiveness, where
effectiveness is quantified in terms of the “loggap” compress-
ibility of the reorderings generated. In particular, we have
developed a new cooling mechanism that helps limit the
number of partitioning iterations required at each recursive
level; have developed two additional swapping cost estima-
tors, designed to provide more stability in the estimations
that are generated as the computation proceeds; have shown
that the computation can be reoriented, so that a sorting
step can be replaced by a more efficient median-finding
process; and have developed a level-synchronized iterative
version that avoids the high degrees of inter-level contention
experienced by the fully recursive implementation, and that
readily supports accelerated operations if initial partitioning
levels are to be bypassed.

To confirm our improvements, we have carried out a
detailed experimental investigation using four typical web
graphs and three typical inverted file indexes. A wide range
of results have been presented, including a demonstration
that loggap can indeed be used as a codec-independent sur-
rogate for measuring compression effectiveness. Our main
sequence of results has demonstrated that in combination
our techniques allow BP reordering times to be reduced by
a factor of around four, and by even more in terms of work-
load (that is, when summed across execution threads), with
little or no loss of compression effectiveness. In addition, we
have explored the time-savings that are possible if an initial
ordering of the input is possible through the use of URL-
based sorting or Length-based sorting, and the partitioning
process commenced on sub-collections rather than the full
collection. We have also observed that improved compres-
sion effectiveness can be achieved if further execution time
can be traded-off to obtain it.

Finally, we note that our code is made available publicly
so that others are able to build on our findings and continue
to investigate this important and interesting topic.

Software
The experimental software is available at https://github.
com/jmmackenzie/enhanced-graph-bisection.

Funding
This work was supported by the Australian Research Coun-
cil (project DP200103136).

Acknowledgment
We thank the referees for their helpful comments.

REFERENCES
[1] J. Zobel and A. Moffat, “Inverted files for text search engines,”

ACM Computing Surveys, vol. 38, no. 2, pp. 6:1–6:56, 2006.
[2] G. E. Pibiri and R. Venturini, “Techniques for inverted index

compression,” ACM Computing Surveys, vol. 53, no. 6, pp. 125.1–
125.36, 2021.

[3] S. Ding and T. Suel, “Faster top-k document retrieval using block-
max indexes,” in Proc. ACM Int. Conf. on Research and Development
in Information Retrieval (SIGIR), 2011, pp. 993–1002.

[4] G. Ottaviano and R. Venturini, “Partitioned Elias-Fano indexes,”
in Proc. ACM Int. Conf. on Research and Development in Information
Retrieval (SIGIR), 2014, pp. 273–282.

[5] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and
A. Shalita, “Compressing graphs and indexes with recursive graph
bisection,” in Proc. Conf. on Knowledge Discovery and Data Mining
(KDD), 2016, pp. 1535–1544.

[6] J. Mackenzie, M. Petri, and A. Moffat, “Faster index reordering
with bipartite graph partitioning,” in Proc. ACM Int. Conf. on
Research and Development in Information Retrieval (SIGIR), 2021, pp.
1910–1914.

[7] A. Moffat and L. Stuiver, “Binary interpolative coding for effective
index compression,” Information Retrieval, vol. 3, no. 1, pp. 25–47,
2000.

[8] G. E. Pibiri and R. Venturini, “Clustered Elias-Fano indexes,” ACM
Trans. on Information Systems, vol. 36, no. 1, pp. 2.1–2.33, 2017.

[9] A. Mallia, M. Siedlaczek, J. Mackenzie, and T. Suel, “PISA:
Performant indexes and search for academia,” in Proc. OSIRRC
Wrkshp. at SIGIR 2019, 2019, pp. 50–56. [Online]. Available:
http://ceur-ws.org/Vol-2409/docker08.pdf

[10] H. Yan, S. Ding, and T. Suel, “Inverted index compression and
query processing with optimized document ordering,” in Proc.
Conf. on the World Wide Web (WWW), 2009, pp. 401–410.

[11] S. Ding, J. Attenberg, and T. Suel, “Scalable techniques for docu-
ment identifier assignment in inverted indexes,” in Proc. Conf. on
the World Wide Web (WWW), 2010, pp. 311–320.

[12] D. Hawking and T. Jones, “Reordering an index to speed query
processing without loss of effectiveness,” in Proc. Australasian
Document Computing Symp. (ADCS), 2012, pp. 17–24.

[13] A. Mallia, M. Siedlaczek, and T. Suel, “An experimental study of
index compression and DAAT query processing methods,” in Proc.
European Conf. on Information Retrieval (ECIR), 2019, pp. 353–368.

[14] J. Mackenzie and A. Moffat, “Examining the additivity of top-k
query processing innovations,” in Proc. ACM Int. Conf. on Informa-
tion and Knowledge Management (CIKM), 2020, pp. 1085–1094.

[15] J. Mackenzie, M. Petri, and A. Moffat, “Anytime ranking on
document-ordered indexes,” ACM Trans. on Information Systems,
vol. 40, no. 1, pp. 13:1–13:32, Jan. 2022.

[16] Q. Wang and T. Suel, “Document reordering for faster intersec-
tion,” PVLDB, vol. 12, no. 5, pp. 475–487, 2019.

[17] F. Silvestri, “Sorting out the document identifier assignment prob-
lem,” in Proc. European Conf. on Information Retrieval (ECIR), 2007,
pp. 101–112.

[18] D. Blandford and G. Blelloch, “Index compression through doc-
ument reordering,” in Proc. IEEE Data Compression Conf. (DCC),
2002, pp. 342–352.

[19] W. Shieh, T. Chen, J. J. Shann, and C. Chung, “Inverted file com-
pression through document identifier reassignment,” Information
Processing & Management, vol. 39, no. 1, pp. 117–131, 2003.

[20] R. Blanco and A. Barreiro, “Document identifier reassignment
through dimensionality reduction,” in Proc. European Conf. on
Information Retrieval (ECIR), 2005, pp. 375–387.

[21] J. Mackenzie, A. Mallia, M. Petri, J. S. Culpepper, and T. Suel,
“Compressing inverted indexes with recursive graph bisection:
A reproducibility study,” in Proc. European Conf. on Information
Retrieval (ECIR), 2019, pp. 339–352.

[22] P. Boldi and S. Vigna, “The webgraph framework I: Compression
techniques,” in Proc. Conf. on the World Wide Web (WWW), 2004,
pp. 595–602.

[23] C. Cheng, C. Chung, and J. J. Shann, “Fast query evaluation
through document identifier assignment for inverted file-based in-
formation retrieval systems,” Information Processing & Management,
vol. 42, no. 3, pp. 729–750, 2006.

[24] R. Blanco and A. Barreiro, “TSP and cluster-based solutions to the
reassignment of document identifiers,” Information Retrieval, vol. 9,
no. 4, pp. 499–517, 2006.

[25] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Pan-
conesi, and P. Raghavan, “On compressing social networks,” in
Proc. Conf. on Knowledge Discovery and Data Mining (KDD), 2009,
pp. 219–228.

[26] P. Boldi, M. Santini, and S. Vigna, “Permuting web and social

https://github.com/jmmackenzie/enhanced-graph-bisection
https://github.com/jmmackenzie/enhanced-graph-bisection
http://ceur-ws.org/Vol-2409/docker08.pdf

15

graphs,” Internet Mathematics, vol. 6, no. 3, pp. 257–283, 2009.
[27] V. N. Anh and A. Moffat, “Local modeling for WebGraph com-

pression,” in Proc. IEEE Data Compression Conf. (DCC), 2010, p.
519.

[28] D. Arroyuelo, M. Oyarzún, S. González, and V. Sepulveda, “Hy-
brid compression of inverted lists for reordered document col-
lections,” Information Processing & Management, vol. 54, no. 6, pp.
1308–1324, 2018.

[29] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
evolution of user interaction in facebook,” in Proc. WOSN, 2009,
pp. 37–42.

[30] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: Membership, growth, and
evolution,” in Proc. Conf. on Knowledge Discovery and Data Mining
(KDD), 2006, pp. 44–54.

[31] P. Yang, H. Fang, and J. Lin, “Anserini: Reproducible ranking base-
lines using lucene,” ACM Journal of Data and Information Quality,
vol. 10, no. 4, pp. 1–20, 2018.

[32] J. Mackenzie, R. Benham, M. Petri, J. R. Trippas, J. S. Culpepper,
and A. Moffat, “CC-News-En: A large English news corpus,” in
Proc. ACM Int. Conf. on Information and Knowledge Management
(CIKM), 2020, pp. 3077–3084.

[33] J. Lin, J. Mackenzie, C. Kamphuis, C. Macdonald, A. Mallia,
M. Siedlaczek, A. Trotman, and A. de Vries, “Supporting inter-
operability between open-source search engines with the common
index file format,” in Proc. ACM Int. Conf. on Research and Develop-
ment in Information Retrieval (SIGIR), 2020, pp. 2149–2152.

[34] D. Lemire and L. Boytsov, “Decoding billions of integers per sec-
ond through vectorization,” Software Practice & Experience, vol. 41,
no. 1, pp. 1–29, 2015.

[35] D. Lemire, N. Kurz, and C. Rupp, “Stream VByte: Faster byte-
oriented integer compression,” Information Processing Letters, vol.
130, pp. 1–6, 2018.

[36] R. W. Floyd and R. L. Rivest, “Expected time bounds for selection,”
Communications of the ACM, vol. 18, no. 3, pp. 165–172, 1975.

Joel Mackenzie completed a PhD in computer
science at RMIT University in Australia in 2019.
He has since worked as a postdoctoral research
fellow at The University of Melbourne, and is now
a faculty member at The University of Queens-
land, Australia. Dr Mackenzie is interested in de-
veloping efficient and effective representations
for large-scale search systems, including index-
ing, compression, and retrieval.

Alistair Moffat completed a PhD in computer
science at the University of Canterbury in New
Zealand in 1986. Since then he has been a
faculty member at The University of Melbourne
in Australia, with interests in text and index com-
pression, and algorithms for string search and in-
formation retrieval, including information retrieval
evaluation. Professor Moffat was inducted as a
member of the SIGIR Academy in 2021.

Matthias Petri completed a PhD in computer
science at RMIT University in 2013. He then
worked as a postdoctoral fellow at The Univer-
sity of Melbourne before joining Amazon Alexa
in Los Angeles in 2019. Dr Petri has research
interests in succinct data structures, techniques
for efficient implementation of natural language
processing systems, and in indexing, compres-
sion, and searching methodologies for informa-
tion retrieval.

	1 Introduction
	2 Document Reordering
	2.1 Motivation and Background
	2.2 Measurement
	2.3 Bipartite Partitioning
	2.4 Signed Bias Values
	2.5 Complexity Analysis

	3 Experimental Setup
	3.1 Hardware and Software
	3.2 Datasets
	3.3 Calibrating the Measurements
	3.4 Baseline Systems

	4 Faster Estimator Heuristics
	4.1 Estimating Bias
	4.2 Avoiding Iterations: Cooling
	4.3 Avoiding Iterations: Alternative Estimators
	4.4 Experiment: Estimators and Cooling
	4.5 Experiment: Comparing Estimator Permutations
	4.6 Algorithmic Enhancement: Sort-Free Swapping
	4.7 Experiment: Sorting or Selecting?

	5 Engineering Considerations
	5.1 Excessive Parallelism
	5.2 Level-Synchronized Iterative Computation
	5.3 Experiment: Controlling Parallelism
	5.4 Parallel Processing Wastage
	5.5 Experiment: Reducing the Start-Up Period
	5.6 Overall Gains
	5.7 The Opposite Tradeoff

	6 Conclusion
	Biographies
	Joel Mackenzie
	Alistair Moffat
	Matthias Petri

