
AcceleratedQuery Processing Via Similarity Score Prediction
Matthias Petri

The University of Melbourne
Melbourne, Australia

Alistair Moffat
The University of Melbourne

Melbourne, Australia

Joel Mackenzie
RMIT University

Melbourne, Australia

J. Shane Culpepper
RMIT University

Melbourne, Australia

Daniel Beck
The University of Melbourne

Melbourne, Australia

ABSTRACT
Processing top-k bag-of-words queries is critical to many informa-
tion retrieval applications, including web-scale search. In this work,
we consider algorithmic properties associatedwith dynamic pruning
mechanisms. Such algorithms maintain a score threshold (the k th
highest similarity score identified so far) so that low-scoring docu-
ments can be bypassed, allowing fast top-k retrieval with no loss in
effectiveness. In standard pruning algorithms the score threshold is
initialized to the lowest possible value. To accelerate processing, we
make use of term- and query-dependent features to predict the final
value of that threshold, and then employ the predicted value right
fromthecommencementofprocessing.Becauseof theasymmetryas-
sociatedwith prediction errors (if the estimated threshold is too high
the querywill need to be re-executed in order to assure the correct an-
swer), the prediction processmust be risk-sensitive.We explore tech-
niques for balancing those factors, andprovidedetailed experimental
results that show the practical usefulness of the new approach.

KEYWORDS
Inverted index; query efficiency; dynamic pruning

ACMReference Format:
MatthiasPetri,AlistairMoffat, JoelMackenzie, J. ShaneCulpepper, andDaniel
Beck. 2019. Accelerated Query Processing Via Similarity Score Prediction. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in InformationRetrieval (SIGIR ’19), July21–25, 2019,Paris, France.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3331184.3331207

1 INTRODUCTION
Millions of dollars per day are spent on the electricity and hardware
costs associated with web query processing, and hence even rela-
tively small improvements in efficiency translate into substantial
monetary (and environmental) savings. Most web search queries
are, at least in the first phase of evaluation, scored assuming that
term occurrences are independent, and that document scores can be
computed as the sum of the term contributions that are determined
at indexing time. An answer to a query is then a set of k top-scoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331207

documents, either for immediate display to the user who formulated
the query, or as input to a secondary re-ranking phase.

A number of efficient query processing strategies have been de-
vised for this situation, including the MaxScore and WAND ap-
proaches. Both seek to avoid unnecessary computation by only
scoring documents that have some hope of making it into an evolv-
ing top-k set and bypassing the documents that do not. Central to
both of these strategies is a non-decreasing value which we refer to
here asθ , thek th largest document score encountered to date during
theprocessing. The idea is that asθ increases, a decreasing fractionof
the remaining documents need to be considered for inclusion in the
top-k set, and an increasing fraction can be bypassed. Once all docu-
ments have been considered and all postings processed, θ will have
converged to the valueΘk (D,Q), the k th largest computed similar-
ity score for queryQ on collectionD. Figure 1 illustrates these ideas.

In this context we consider the following research questions:
RQ1 Is it possible to estimate Θk (D,Q) in advance, before any

processing of postings is undertaken?
RQ2 IfΘk (D,Q) can be estimated in advance, to what extent does

that knowledge allow accelerated query processing?
RQ3 Does pre-knowledge ofΘk (D,Q) allow other modifications

to the way that queries are processed using methods such as
MaxScore,WAND, and BMW?

2 BACKGROUND
Term-WeightedSimilarityScoring. Wesuppose that to compute
the similarity between an q-term query Q= {t1,t2,...,tq } and a doc-
ument d a formulation S(d,Q) = f1(d)+

∑q
i=1 f2(ti ,Q) ·C(ti ,d) is

used, where f1(·) is a function of d alone and can be pre-computed;
where f2(·,·) is a function of a term and a query, and not of d ; and
where C(t,d) represents the query-independent relative importance
of term t in document d , and can also be pre-computed. That is, we
presume that S(d,Q) can be computed as a transposed linear sum
of term-document contributions. Many retrieval formulations have
this structure, including the well-known BM25 approach.

We also suppose that a “top-k” filter will be applied, with the
answer set nominally formed by scoring every document in the
collection, then decreasing-score ordering that set, and then taking
the first k documents. If we denote by Θk (D,Q) the k th largest
similarity score that results whenQ is evaluated against a collection
D of documents:

Θk (D,Q)=max{θ | |{d ∈D | S(d,Q)≥θ }| ≥k},

then a top-k query is answered via a set Ak (D,Q) containing k
documents with scores not smaller thanΘk (D,Q). If the answer set
will bepresented immediately to theuser, thenk=10ork=100might

https://doi.org/10.1145/3331184.3331207
https://doi.org/10.1145/3331184.3331207

documents in collection

s
c
o
re

 (
a
n

d
 u

p
p
e

r
b
o

u
n
d

)

document upper bound

scored and enters top

scored and rejected

bypassed (not scored)

k

Θ
k

(a) Normal pruning, with a single threshold (blue line).

heap threshold

documents in collection

s
c
o
re

 (
a
n
d
 u

p
p
e
r

b
o
u
n
d
)

score threshold

k
Θ

(b) Use of an initial score threshold estimate (dark red line).

Figure 1: Dynamic pruning, with the top k = 3 documents to be
identified: (a) with the heap threshold (blue dashed line) initialized
to a minimum value, and the score threshold equal to the heap
threshold throughout; and (b) using an initial non-trivial score
threshold (red dashed line) that approximates the final heap
threshold. Provided that the initial score threshold estimate is lower
than the final k th score, an equivalent answer set is returned, with
fewer documents scored and more documents bypassed.

be appropriate. If the setwill be supplied as input to a second-stage re-
ranker, thenk=1000 or evenk=10,000might be used. For any given
collectionD and queryQ, the thresholdΘk (D,Q) is non-increasing
with k . Note also that where there is no risk of ambiguity we will
useΘk as shorthand forΘk (D,Q), taking as read the existence of a
collection and query. Finally, we use ∇ to represent the lowest score
that can be assigned to any document (often zero, or minus infinity).

Query Processing. Operationally, it is usual for each contribution
C(t,d) to be either stored as part of the corresponding posting in
a document-level inverted file, or to be computable directly from
the stored posting information. A range of processing strategies is
then possible. In document-at-a-time processing, the query terms’
postings lists are simultaneously processed, and a final score for
each document is computed before any other document is consid-
ered [48]. One aspect of document-at-at-time processing that has
made it attractive for practical use is a range of dynamic pruning
heuristics. The WAND mechanism developed by Broder et al. [2]
is a good example of these techniques. In theWAND approach, a
maximum contribution,Ut is associated with each term t , computed
at index construction time asUt =max{C(t,d) | d ∈D}. A heap of
the “seen so far” top-k scores and their corresponding documents is
maintained, together with a variable θ that is the smallest amongst
those k scores. That heap contains zero items at the commencement
of the process, with θ initialized to ∇.

At eachWAND scoring cycle, the query terms t1 to tq are assumed
to be ordered according to the valuesd1 todq , the ordinal identifiers
of the next unprocessed document in each corresponding postings
list. A pivot term tp is then determined as the smallest p such that

the sum of theUi bounds for the terms matching d1 to dp exceeds θ .
At this point it is known that no further documents prior to dp can
attain a score greater than θ , and so they can all be bypassed. But
if t1 through tp all indicate the same document dp , then it needs to
be fully evaluated, since its scoreS(dp ,Q) could conceivably exceed
the current threshold θ . As a result, either dp will indeed attain a
score greater than θ and enter the top-k structure (perhaps causing
another document to be ejected and θ increased), or it will have been
found to be a false hope, withS(dp ,Q)<θ , meaning that dp is not in
the final answer setAk (D,Q). The postings list cursors for terms t1
to tp are then advanced to the next document number greater than
dp , the terms reordered according to the new d1 to dq values, and
the next scoring cycle commenced. Petri et al. [45] provide detailed
pseudo-code for this process.

In a refinement of theWANDprocess,Ding and Suel [16] note that
if the upper-bound valuesUt are stored once per block of postings
rather than on awhole-of-list basis, more precise decision-making is
possible andmore documents can be bypassed, albeit at an increased
cost in termsof the logic required todetermine if anygivendocument
should be evaluated. Dimopoulos et al. [15] and Petri et al. [45] have
also studied this block-maxWAND approach. Most recently, Mallia
et al. [37, 38]proposedanenhancedversionof block-maxWAND that
leverages variable-sized blocks, allowing for even tighter localized
upper-bounds.We refer to this latest approach asBMW, and assume
the use of variable-sized blocks. The earlierMaxScore process de-
scribed by Turtle and Flood [51] similarlymakes use of an increasing
threshold θ , evolving towards the same final value Θk (D,Q), but
employs different processing logic in terms of determining which
documents may need to be scored, and which can be bypassed.

All three approaches make use of document-at-a-time scoring, a
“k th best so far” threshold θ , and (for any given retrieval similarity
formulation) converge to the same final score valueΘk (D,Q); and
all three of them may thus be amenable to the effects explored in
the three research questions listed in Section 1. Note also that all
three pruning options are safe, in that they generate exactly the same
answer setA(D,Q) as does the underlying exhaustive computation.

Fontoura et al. [17] propose a hybrid query processing approach,
where Q is split into two parts: terms with short postings, and terms
with long postings. The sub-query with the short postings is pro-
cessed first. Then, the partial score of the k th element in the heap is
used to set the value of θ . In a somewhat similar approach, de Car-
valho et al. [13], store the values of the k th highest scores in each
postings list for common values of k such as 10, 100, and 1,000. At
run-time, θ is initialized to the maximum of the k th highest scores
for the candidate postings lists. This idea was also explored by Kane
and Tompa [25]. Note that this approach requires a strictly additive
similarity (that is, with f1(·) = 0 and f2(·, ·) constant), which then
provides the necessary assurance that Θk cannot be smaller than
the largest (across the query’s terms) of the k th largest contribution
C(t,d). For any particular queryQ, this quantity, denotedQk , can be
calculated from per-term values stored in the index, and then used
as a risk-free initialization for θ . One of our goals in this paper is to
generate better estimates ofΘk .

Figure 1(b) illustrates the interaction between actual document
scores (the dots), document upper bound scores U_bound(d) (the
whiskers above the dots), the score computation threshold θ and a

“safe” initialization of it, the heap entry threshold h_threshold, and
the final top-k cutoff scoreΘk .

In their description of BMW, Ding and Suel [16] note that prim-
ing of the threshold might reduced execution time and posed the
prediction question that is considered here, and other authors have
also considered the drag imposed by the startup cost of the threshold,
as it advances upward from its low initial value. For example, Kim
et al. [26] considerWAND as it applies to selective search; andClarke
et al. [7] deliberately adjust the threshold so as to allow faster (but
non-safe) query execution.

MachineLearningforEfficiency. Mostefficiency-basedmachine
learning research work has focused on Learning-to-Rank (LTR) re-
trieval stages that occur after candidate generation.Cambazoglu et al.
[4] were among the first to explore efficiency concerns in an LTR
framework. Inproductionsearchengines,LambdaMART[3]andGra-
dient Boosted Regression Trees (GBRT) [18] are still widely consid-
ered to be state-of-the-art, and as a result, several optimizations to im-
prove performance through tree representation and traversal [24, 30,
31], model pruning [12, 32], and budget-aware learning algorithms
[44, 55] have been proposed. Other recent studies have focused on
balancing feature costs (efficiency) and system effectiveness across
multiple re-ranking stages using cascading loss functions [5, 53].

Another approach to improving efficiency inmulti-stage retrieval
is to minimize the number of documents that must be re-ranked for
each query [9, 35, 50]. These approaches are particularly relevant
to our current work as the cost of the ML prediction is part of the
candidate generation stage. As dynamic pruning algorithms such
as BMW are often used for candidate generation and are heavily
optimized for efficiency, the use of ML in early-stage retrieval is still
relatively rare outside of query rewriting [20, 33, 56] as the cost of
the prediction can easily outweigh the benefits.

Recent LTR research has primarily focused on Neural IR mod-
els [41]. Despite consistent progress in improving search effective-
ness using these models, few published studies have carefully ex-
plored the efficiency costs of deep learning (DL) models in the IR
domain. Zamani et al. [57] explore the possibility of learning a latent
sparse representation which can be used for efficient end-to-end
retrieval without requiring the use of an initial candidate generation
stage; but their choice of baseline implementation leaves it unclear
whether they are competitive in terms of efficiency.

Kraska et al. [28] show that DLmodels can in fact be optimized
for both efficient and effective prediction, with learned B-Tree opera-
tions for 200 million records requiring less than one microsecond on
average. So efficient neural models for IR appear to be within reach,
albeit mostly unexplored at this time.

Other recent work has turned to Bayesian reasoning to provide
more principled arguments for compression and efficiency in deep
learning models [29]. While we do not approach our problem from
a Bayesian deep learning [19] perspective, Section 4 does explore
both neural and Bayesian models for prediction effectiveness.

3 EXPLORING POTENTIALGAINS
Oracle Evaluation. To demonstrate proof-of-concept, we consider
first an oracle estimator that “magically” knows the valueΘk (D,Q)

prior to commencement of evaluation, and is thus able to evaluate
each query using the best possible knowledge. Table 1 lists query

Method Time k=10 k=1,000

∇ Qk Θk ∇ Qk Θk

MaxScore P50 3.8 2.9 2.0 13.3 8.0 7.3
P95 35.3 34.4 24.9 66.6 60.5 49.7
P99 70.0 68.1 47.5 118.9 107.9 88.3
Mean 9.0 8.1 6.0 21.3 16.9 14.4

WAND P50 2.8 2.2 1.7 13.1 7.2 6.1
P95 26.9 24.8 20.8 59.5 48.8 41.2
P99 64.5 57.2 51.7 102.6 90.6 83.9
Mean 7.1 6.1 5.1 19.7 14.0 11.8

BMW P50 1.0 0.9 0.7 5.9 3.4 2.7
P95 7.4 7.0 5.2 27.8 23.2 16.2
P99 15.7 14.8 10.6 48.2 44.1 30.8
Mean 2.3 2.1 1.6 9.7 6.7 5.0

Table 1: Per-query execution times (milliseconds) for MaxScore
processing (top),WAND processing (middle), and BMW processing
(bottom) on the Gov2 collection. Two different values of k are
explored, and three different initializations for θ : standard initializa-
tion, with θ initialized to ∇; with θ initialized to Qk , the maximum
value of the k th contribution across the q terms in Q [13, 25]; and
an oracle in which θ is initialized to Θk (D,Q) for each query Q.
The four rows in each group record the median, the 95 th and 99 th
percentiles, and the mean.

execution times forMaxScore,WAND and BMW evaluation, mea-
sured in milliseconds across a set of 5,000 queries and using the
Gov2 collection. Exact knowledge of the final score threshold allows
substantially reduced query execution times, across the distribution
of query durations from themedian (50% quantile) through to the tail
(99% quantile). Based on the final rows of mean times, and compared
to the “θ initialized to ∇” versions, savings of up to approximately
30%when k=10 and up to approximately 50%when k=1000 can be
realized by a perfect predictor ofΘk , with the “up to” components
of those claims dependent on the execution-time cost of generating
the corresponding predicted thresholds. The potential savings rela-
tive to the initial θ represented by Qk (the two middle columns) are
smaller, but nevertheless, represent a possible opportunity for im-
provement. Note that BMW demonstrates its usual advantage over
MaxScore andWAND in these experiments. (A detailed description
of the hardware, software and data resources used in this evaluation
environment used for these initial results is provided in Section 5.)

We also explored the distribution of Θk scores across the same
set of queries, and verified that they show a broadly Gaussian dis-
tribution, with a mean value of approximately 19 for k =10 and of
approximately 13 for k=1,000. Note that in the BM25 computation
all scores are positive, and hence ∇=0 may be used.

Sensitivity. Another important factor that has the potential to af-
fect the viability of any proposed prediction approach is the sensi-
tivity of query execution time to imprecise thresholds. Suppose, for
example, that prediction Θ̂k arises from some modeling mechanism,
where Θ̂k <Θk . In this situation executing theWANDmechanism

P 50 P 95

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

5

10

Fraction of oracle

T
im

e
[m

s]

10
100
1,000

Figure 2: Sensitivity of the median (P50) and 95 th percentile tail
latency (P95) forWAND query processing, plotted as a function of
the fraction ofΘk used as the initial estimate, for three values of k .
Similar trends were observed forMaxScore and for BMW.

with θ0 initialized to Θ̂k generates the correct outcome, since a su-
perset of the final answersA(D,Q) are examined. But the execution
time may increase, since more documents will have been processed.

Figure 2 explores this issue, using the 5,000 queries and Gov2
collection. Both plots show the same behavior – moderate savings
(only) in execution time when the initial threshold θ is around 75%
or less of the oracle value Θk , and with 0.9Θk or more required if
anything approaching the full potential savings is to be captured.
Similar patterns arise for other retrieval algorithms.

FailureDetection. If the estimate Θ̂k used to initializeθ0 is greater
thanΘk , then the pruning computation is no longer safe, and might
produce a different answer set than the underlying exhaustive com-
putation. Fortunately, it is always possible to determine if this sit-
uation has arisen. One scenario that might occur is if the computed
answer set contains fewer than k documents; in this case it is clear
that θ was initialized too high, and that the query needs to be re-
executed with a more generous initial value. A second more subtle
situation might also occur: the computed answer set might contain
k documents, because k or more documents were identified for full
scoring and k of them remain in the heap at the completion of pro-
cessing, but the smallest of thosek scores is less than the estimate Θ̂k .
In this case the k th largest value in the heap can be used as an initial
estimate θ0 for a re-execution, since we now know that there are at
leastk documents inD that have scores greater than or equal to that
value. Note that in this second situation the answer set might – by
luck – be correct, and the re-computation unnecessary. But there is
no simple way of testing whether that is the case, hence the need to
re-execute thequery. Section 6 explores an approach that under some
situations allows the re-execution to be avoided, and then uses on
that observation to describe an alternative mechanism for patching.

Query Processing Revisited. Based on these various considera-
tions, Algorithm 1 shows the proposed process, with the iterator
implied in the “for” loop at step 5 hiding the details of the corre-
spondingpruningmechanism.Theper-document scoreupperbound
U_bound(d) is derived in the usualmanner from theUt values stored
in the postings lists, and the similarity formulation in use.

In terms of risks, estimated thresholds Θ̂k that are lower thanΘk
cause additional documents to be scored, and hence reduce query
throughput (Figure 2); whereas estimated thresholds Θ̂k that are

Algorithm 1 Computation ofA(D,Q) based on a estimated score
threshold. The test at step 15 ensures that the answer returned at
step 18 is safe, even if the score threshold estimated at step 1 is
incorrect.
1: develop an estimate Θ̂k of the final k th largest score
2: set θ← Θ̂k ▷ scoring threshold
3: set h_threshold←∇ ▷ heap entry threshold
4: initialize an empty min-heap
5: for each d ∈D with U_bound(d)≥θ do
6: calculate score←S(d,Q)
7: if score>h_threshold then
8: add (d,score) to the heap
9: if the heap has more than k items then
10: eject the least-weight document in the heap
11: adjust h_threshold to reflect the modified heap
12: if h_threshold>θ then
13: set θ←h_threshold
14: // now for the post-processing check
15: if h_threshold< Θ̂k then ▷ cannot guarantee answer
16: set θ←h_threshold
17: execute steps 3 to 13 again
18: return the k documents in the heap

higher than Θk result in the whole query being re-executed as a
result of the test at step 15. That is, both kinds of estimation error
incur a penalty, but over-estimation is a more costly mistake. That
tension is explored further in the next section.

4 THRESHOLD PREDICTIONMODELS
The primary requirements for a pruning threshold prediction model
– estimation speed andmodel accuracy – are in tension, asmore com-
plex models might produce better predictions, but may also require
more computation. Efficient queryprocessing schemesexecute top-k
queries in around 5–20milliseconds (Table 1), and so anymodelmust
generatepredictions ina fractionof that time if thepotential gainsare
to be realized.We note that transferring data to theGPU is expensive.
Thereforewe investigate relatively simplemodels, aiming toproduce
predictions that requires less than one millisecond of CPU time.

Algorithmic Predictor. Aswas noted earlier, the maximum of the
k th largest contributions (Qk) from the query terms can be used
as a better-than-∇ lower bound onΘk [13, 25], and we employ this
deterministic predictor as a second baseline in our experiments.

ProbabilisticPredictor. Ourfirst approach is aprobabilisticmodel
that generates distributions over the predicted Θ̂k . The main advan-
tage of this approach is that it decouplesmodeling from the decision-
making procedure, important in our setting because (as was noted in
Section 3) overestimating the thresholds Θ̂k incurs a higher penalty
than underestimating them. Figure 3 shows an example of this ap-
proach in practice: the predictor outputs aGaussian distribution over
Θ̂k .While themedian of this distribution provides themost probable
value for the threshold, it is actuallyhigher than the truevalue,which
can incur in a heavy penalty. Instead, amore conservative prediction
can be favored by taking a lower quantile as the predicted value.

q=0.5

Qk

Θk

q=0.1

Θ̂k

Figure 3: Pictorial representation of the probabilistic approach.
The predictor outputs a Gaussian distribution over Θ̂k , where
the median over-predicts. A lower quantile provides a more
conservative estimate while still giving improvements over the
algorithmic predictor Qk .

−5 −4 −3 −2 −1 1 2 3 4 5

2
4
6
8

10

0
Linear (α =3) Huber (q=0.2)

Figure 4: Two asymmetric loss functions: asymmetric linear loss,
and quantile Huber loss [10], providing different asymptotic loss
penalties for positive and negative losses of the same magnitude.

The concept of penalizing overestimates and underestimates dif-
ferently is formalized using an asymmetric loss function. Let u =
Θk −Θ̂k be the difference between the true threshold and the pre-
dicted value. The asymmetric linear loss for the probabilistic predic-
tor can be defined as:

L(Θ̂k ,Θk)=

{
u ifu ≥ 0
α · |u | ifu ≤ 0,

where α > 0 is a parameter that captures the penalty of an overes-
timate as compared to an underestimate. When α >1 overestimates
are penalized disproportionately; conversely, when 0<α <1, under-
estimates are more heavily penalized. This loss is a generalization of
the absolute error, or L1 loss, which is recovered when α =1. Figure
4 shows an instance of this loss (blue solid line).

The relationship between α and distribution quantiles can be for-
malized usingMinimumBayes Risk (MBR). Given a predictive distri-
bution,MBRaimsatobtaining theoptimalvaluegivena loss function,

Θ̂k =argmin
Θ̂k ∈R

E
[
L(Θ̄k ,Θk)

]
=

∫
Θ̄k

L(Θ̄k ,Θk)·p(Θ̄k | Q) dΘ̄k ,

where Θ̄k is a random variable modeling the desired threshold, and
conditioned on the input queryQ.When using an asymmetric linear
loss, it can be proven that the optimal result is the 1/(α+1) quan-
tile of the distribution [6]. This easily translates to applying a fixed
cost. For example, if overestimates are three times more costly than
underestimates, the 0.25 quantile should be used.

Uncoupling the loss from the model has a series of advantages.
For instance, at test time, one can obtain multiple values for Θ̂k ,

either sequentially or in parallel, without having to train multiple
models or run the predictor multiple times. Another advantage is
that query-specific losses can be applied.

Themain drawback of this approach is that it restricts the class of
models that can be applied if prediction cost is critical. In this work,
a Bayesian Linear Regression model (BLR) is used since it provides
closed form solutions for the predictive distributions [34, 42], and
avoids traditional Bayesian inference techniques such as sampling,
which can be prohibitively slow.We use the Scikit-learn 0.20 toolkit
implementation with default hyperparameters and train the model
by optimizing the marginal likelihood [34].

Loss-Based Predictor. An alternative is to incorporate the desired
asymmetric loss into the model definition. Such models do not gen-
erate distributions but instead try to directly predict a value given
the loss. Themain advantage of this approach is that it allows the ex-
ploration of more complex models beyond simple linear regression,
while still maintaining acceptable prediction efficiency. In particular,
if the loss is differentiable, neural-based models can be trained using
backpropagation, which we explore in this work.

The asymmetric linear loss is differentiable everywhere except
whenu=0. According to Dabney et al. [10], this can make training
in neural models unstable, and they instead propose an alternative
approach based on the Huber loss [22],

L(Θ̂k ,Θk ,q)=

{
q ·LHuber (Θ̂k ,Θk) ifu ≥ 0
(1−q)·LHuber (Θ̂k ,Θk) ifu ≤ 0,

LHuber (Θ̂k ,Θk)=

{
1
2u

2 if |u | ≤κ
κ(|u |−κ/2) if |u | ≥κ,

where q is the desired quantile to be optimized and κ is a parameter
that splits the loss into a linear and a squared region. The loss is linear
when the absolute error is larger than κ but falls back to a squared
error losswhen it is below that value. In thiswork,we followDabney
et al. [10] and use this loss with κ =1 to train our models. Figure 4
shows an example of an asymmetric Huber loss (black dashed line).

The specific neural architectures we employ are multi-layer per-
ceptrons with two (MLP-L2) or four (MLP-L4) hidden layers which
can be evaluated efficiently on a single CPU. Training is done via
standard techniques using the Adam [27] optimizer, with an initial
learning rate of 0.001, and early stopping on a development set. The
architecture is regularized by applying batch normalization [23] and
a dropout rate of 0.25 between each layer [47]. Hidden layer sizes
are the same as the input layer.

When compared to the probabilistic approach, themain drawback
of loss-based predictors is that the loss needs to be known at train-
ing time. This vastly reduces the flexibility of any decision making
procedure: different losses require multiple models and any changes
to the loss after deployment require model retraining. In this work,
we compare the probabilistic and loss-based predictors empirically
but these key differences should be considered when applying this
approach in real world scenarios.

Data, Features and Costs. To train the models we use 8,073,821
queriesdrawna2006MicrosoftQuery log releasedaspart of aWSDM
workshop [8]. We use an additional 1000 queries as a development
set and 1000 queries drawn from the same collection (ensuring no
overlapwith train/dev) to evaluate theperformanceof our predictors.

Type # Description

Score 14 Histogram of block max scores such that 2i th
highest block max score is stored, for i ∈ [0,14]

Score 3 k th highest for k ∈ {10,100,100}
Weight 1 IDF component of BM25 for a given term
Frequency 4 Mean, median, min and maximum ft value
Frequency 9 Histogram of ft

storing the number of ft values ≥ 2i for i ∈ [0,8]
Doc len 4 Mean, median, min, and max document length

Table 2: The 35 features that must be added to the index so that
they can be used for threshold score prediction.

For each query we extract the relevant features from the inverted
index, and also determine Θk (D,Q) for k ∈ {10,100,1000}. For the
intrinsic evaluation of the different predictorsweutilize the standard
Gov2 collection described in Section 5.

We extract and store several features from the inverted index,
listed in Table 2; and hence add a constant per-term overhead to the
cost of storing it. These features are easily extracted from the in-
verted index and add 7.5 bits per posting to the index ofGov2, and 6.6
bits per posting to theClueWeb09B index without any compression
of the features. Note that in practice, many these features are likely
to be stored for use in the re-ranking stage of query processing.

The cost of storing the predictionmodels is small. TheBLRmodel
requires 1.0 MiB and theMLPmodels require 1.7 MiB (MLP-L4) and
0.9 MiB (MLP-L2). All of the models are static arrays of floating-
point numbers and are retained in memory during query processing.
Training is equally fast, and requires less than 30 minutes per model.

Prediction Speed. The simplicity of the models being used means
that prediction time is negligible. The mean query prediction time
for is 0.6 ms for MLP-L2 and 0.9 ms for MLP-L4. The Bayesian linear
regression model takes 0.6 ms to obtain the predictive distribution
for a single query and 0.1 ms to get a quantile value. This distinction
is important because (as explained above), new quantiles can be
obtained without incurring an additional prediction overhead.

Python 3.7, Pytorch 1.0, Scipy 1.1 and Scikit-learn 0.20 were used
to implement the predictors. Thus, a substantial overhead exists in
the running times reportedaboveas compared toanoptimizedC/C++
versionwhichwould be deployed in a production environment. That
is, prediction costs are negligible for both of the models used. Even
so, prediction costs are included in the experiments in Section 5.

Intrinsic Evaluation. We assess predictive performance using
three metrics. The first one is Pearson’s ρ correlation, a common
metric to evaluate regressionmodels, and serves as a sanity check for
our approach. The other metrics areMean Underprediction Fraction
(MUF), expressed as the mean fraction Θ̂k/Θk when Θ̂k <Θk , and
Overprediction Rate (O%), which illustrates the percentage of predic-
tions when Θ̂k >Θk . These two are directly related to our task: an
ideal model would have a MUF of 1.0, while keeping O% close to 0.

Table 3 shows the results fork ∈ {10,1000} on theGov2 dataset for
several quantiles. First, we note that all models obtain a strong ρ cor-
relation (>0.7) under symmetric conditions (q=0.5), showing that
our models are able to learn the relation between the features and

Quant. Qk MLP-L2 MLP-L4 BLR

ρ MUF ρ MUF O% ρ MUF O% ρ MUF O%

k=10
0.50 0.47 0.70 0.81 0.88 58 0.81 0.89 62 0.82 0.90 57
0.30 - - - 0.87 44 - 0.87 47 - 0.87 28
0.10 - - - 0.85 25 - 0.85 23 - 0.78 7
0.05 - - - 0.83 16 - 0.84 18 - 0.72 3
0.01 - - - 0.78 3 - 0.78 3 - 0.61 1

k=1,000
0.50 0.53 0.81 0.85 0.91 57 0.86 0.91 65 0.88 0.91 57
0.30 - - - 0.90 48 - 0.90 48 - 0.89 25
0.10 - - - 0.88 28 - 0.89 29 - 0.80 5
0.05 - - - 0.87 18 - 0.86 17 - 0.76 2
0.01 - - - 0.82 4 - 0.83 10 - 0.66 0

Table 3: Mean under-prediction fraction (MUF) expressed as
the mean fraction Θ̂k/Θk when Θ̂k < Θk , Pearson’s ρ of the
predicted threshold Θ̂k and the true valueΘk , and percentage rate of
over-predictions (O%)where Θ̂k >Θk ; for fourmodeling approaches
and k ∈ {10,1000}. The Qk estimator never over-predicts.

-100

80
60
40
20
10
0

-10
-20
-40
-60
-80

100

Qk MLP-L4 q=0.5 BLR q=0.5 MLP-L4 q=0.1 BLR q=0.3

O
ve
r/
U
nd

er
Pr
ed
ic
tio

n
[%
] 10 1,000

Figure 5: Relative prediction error usingMLP-L4 (two quantiles),
BLR (two quantiles), and Qk , for k ∈ {10,1000}.

the thresholds. These values are also higher than the ones obtained
by Qk , showing that is room for improvement over the baseline.

In terms of MUF and O%, BLR tends to be more conservative than
theMLPmodels, andwhenq=0.01 has no overpredictions observed.
However, in that scenarioMUFis lower thanQk ,which isundesirable
since Qk also never overpredicts. Clearly, in order to obtain perfor-
mance gains, a higher quantile must be used. TheMLPmodels tend
to be more optimistic, so lower quantiles are viable. The remaining
question is whether favorable tradeoffs betweenMUF and O% trans-
late to performance improvements, addressed in the next section.

Figure5showsrelativepredictionerrors forMLP-L4, and theeffect
the asymmetric loss function has on prediction accuracy. Estima-
tions usingq=0.5 tend to have a high percentage of over predictions
(positive relative errors), whereas theq=0.1 andq=0.3models skew
towards a smaller fraction of positive relative errors, but decrease the
mean under-prediction fraction (MUF). Even so, a substantial frac-
tion of the prediction errors are less than the 10% target suggested
by Figure 2. The next section provides end-to-end experiments that
measure the tradeoffs involved. Compared to the naive deterministic
predictor Qk , the two models make substantially better predictions.

Feature Analysis. The weighted summation in the Linear Bayes
model means that it is possible to explore the relative importance of
the features, creating an equal footing by standardizing each column
of scores, and with missing features set to a z-score of zero, equiv-
alent to the column mean. However, interdependencies between
features meant that the weights were not always straightforward
to interpret. The most important features were the k th largest con-
tribution C(t,d) of the two rarest terms in the query. The predictor
also correctly identifies that the length of the rarest term is inversely
correlated withΘk . This is consistent with the intuition that a query
consisting of only frequent terms is very likely to have a smallΘk .
Further ablation studies are required to gain a deeper understanding
into the performance of the different predictors.

5 EXPERIMENTS
Data Resources. We use two document collections:Gov2, 25 mil-
lion documents from the .gov domain; and ClueWeb09B, 50 million
web documents crawled in 2009. Queries were taken from the 2006
Microsoft log (seeCraswell et al. [8]), andKrovetz-stemmed, stopped,
and then shuffled into a random order. A set of 5,000 distinct queries
were sampled for early exploration; a second set of 1,000 for initial
training, ensuring no overlap with the first set; a third set of 10,000
were reserved for final measurement, again making sure that there
was no overlap; and the de-duplicated balance (around five million
distinct queries) was used for model training. Note thatGov2was
used for the preliminary analyses in the previous sections. We now
useClueWeb09B to validate our preliminary analysis, as it is more
representative of a real-world web search scenario.

Software Resources. The collections were first indexed via Indri,
then the indexes extracted and reordered using recursive graph
bisection [14, 36], and used as input to the PISA experimentation
platform1 [38, 39, 43]. Where BMW is used, we apply variable-sized
blocks with a mean block size of 40 elements.

Hardware Platform. Except where otherwise noted, the results
here use programs implemented in C++17 and compiled with GCC
7.2.0 using the highest optimization settings. Experiments are per-
formed on amachinewith two Intel XeonGold 6144CPUs (3.50GHz),
512 GiB of RAM, running Linux 4.13.0. The CPU is based on the Sky-
lake micro-architecture, which supports the AVX-512 instruction
set, though we did not optimize for such instructions. Each CPU has
L1, L2, and L3 cache sizes of 32 kiB, 1024 kiB, and 24.75 MiB, respec-
tively. All timing experiments were carried out on an otherwise idle
system, using a single thread.

Model Distribution Trade-Offs. Section 4 describes several pos-
sible trade-offs between the modeling approaches in terms of the
measuresused:Pearson’sρ,MUF, andO%. Inparticular there is acom-
plex trade-off between the high cost of sometimes over-predicting
and the smaller, butmore pervasive, cost of under-predicting. Table 4
provides execution times for a range of combinations of predictive
approach and pruning technique, focusing on retrieving the top
k=1,000 results on theClueWeb09B test collection, using the set of
10,000 held-out test queries. All three algorithms show performance

1https://github.com/pisa-engine/pisa

benefitswhen comparedwithQk , andwith theBLR predictor consis-
tently outperformingMLP, presumably because of the tighter predic-
tion range from BLR (Figure 5). For example,MaxScore is generally
the least efficient pruning method, and hence also benefits the most
with accurate threshold prediction. The algorithm favors the most
aggressive quantile as over-predictions incur a significant penalty.
Overall,MaxScore improvesbyapproximately15%. It is alsonotewor-
thy that BMW also benefits for the new approach. For BLRwith q=
0.1, there isa4%improvementoverall, including thecostof thepredic-
tion,which is approximately 0.5milliseconds per query (as noted, un-
optimized). As the BMW implementation used is already heavily op-
timized, even minor further performance improvements are notable.

Finally,WAND benefits the least of the three algorithms, a conse-
quence of the interaction between under/over-prediction accuracy
and the global upper bounds computation, explored further in the
next section. Taking all trade-offs into consideration, the BLR algo-
rithm appears to be the best choice overall, with q=0.1.

6 REFINEMENTS
Over-Prediction Risk. The process described in Algorithm 1 re-
quires that the query be re-evaluated (step 15) if the final heap
threshold score (variable h_threshold) is still below the score thresh-
old θ , which (in this scenario) will itself still be equal to Θ̂k . The
re-computation is required in order to be certain that the answer
set returned is indeed the top-k for the query. However, the test
is pessimistic, since it may be the case that every one of the top-k
documents has had its score computed and been added to the heap,
that h_threshold = Θk , and that the uncertainty has arisen solely
because of an over-prediction, with Θ̂k > Θk . To explore the like-
lihood of such situations, the three pruning methods were tested
with controlled over-prediction, setting Θ̂k to increasing multiples
ofΘk . In each case the fraction of queries for which the heap never-
theless contained a correct top-k answer set (including allowing for
document swaps caused by tie-breaking issues) for the query was
recorded at each over-prediction level.

The results of this experiment are presented in Figure 6 on the
ClueWeb09B collection fork=1,000. The low resilience displayed by
the BMW pruning mechanism compared to the other two options
is a direct consequence of its ability to bypass a higher fraction of
the documents. On the other hand, the propensity ofWAND to score
more documents than the boundθ would suggest, a result of itsmore
generous calculation of U_bound(d), means that it is more likely to
have generated a correct answer. The same trends were observed
for smaller answer sets (k=10 and k=100) on both collections.

Reducing the Re-Computation. To exploit this pattern of behav-
ior, Algorithm 2 describes an enhancement that can be employed in
situations when document similarity is based on a scoring regime in
which f2(ti ,Q) is constant, andWANDpruning is being used. If those
conditions hold, then a q term query Q has at most 2q−1 different
values of U_bound, one for each non-empty combination of query
terms, referred to here as being a subquery. Some of the subquery
U_bound scores will already be greater than Θ̂k , meaning that all
documents containing those term combinations will have been fully
scored during the first phase. Other subquery U_bound scores will
be below h_threshold; those combinations can be safely ignored. In
between these two bounds, the subqueries need to be explored, by

https://github.com/pisa-engine/pisa

Method Time ∇ Qk
MLP BLR

0.5 0.3 0.1 0.05 0.01 0.5 0.3 0.1 0.05 0.01

MaxScore P50 45.2 35.4 34.3 38.4 32.4 31.8 33.0 33.8 31.0 34.0 31.9 31.1
P95 167.2 155.7 197.6 218.9 189.0 175.9 166.6 182.4 155.1 148.6 141.5 132.7
P99 260.5 249.6 419.9 339.9 325.6 297.5 286.3 302.2 264.3 242.6 237.2 213.5
Mean 61.6 51.8 60.2 66.6 55.9 52.7 51.5 56.6 49.0 49.7 47.1 45.0

WAND P50 33.0 26.9 28.2 27.8 26.0 26.0 25.3 26.6 24.7 25.9 25.4 27.6
P95 153.3 147.4 194.4 196.6 186.8 184.1 171.9 177.6 151.9 147.8 146.6 148.2
P99 272.4 269.4 427.7 428.7 414.5 393.1 386.3 379.9 287.6 268.2 267.6 266.4
Mean 51.2 45.1 56.5 56.7 52.5 51.5 49.3 51.8 44.7 44.5 44.6 45.5

BMW P50 16.8 13.6 14.4 13.8 13.2 13.1 13.2 14.1 13.2 13.0 13.4 13.6
P95 82.4 82.5 98.8 97.9 88.6 89.3 80.0 94.5 83.1 78.4 79.4 79.2
P99 153.0 151.9 186.8 186.3 180.1 178.2 159.9 184.3 165.0 152.1 158.2 148.2
Mean 27.1 24.9 28.5 28.0 25.8 25.1 24.4 27.1 24.7 23.9 24.4 24.3

Table 4:Algorithm 1 query execution times, retrieving k=1,000 results from theClueWeb09B collection, predicting Θ̂k using two baseline
methods (∇ and Qk) and five quantiles q for theMLP and BLR predictors. The best value in each row is in red. All times are in milliseconds.

MaxScore WAND BMW

1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5 1.0 1.1 1.2 1.3 1.4 1.5
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Fraction of oracle

In
co

rr
ec

t r
es

ul
ts

 [
%

]

2
3
4
5+

Figure 6: Percentage of instances in which an incorrect answer set is generated when the estimated threshold Θ̂k is greater than the true
thresholdΘk for queries of varying lengths. Note the vulnerability of the BMW implementation to this issue.

determining the documents that match the subquery as a Boolean
conjunction, and then scoring those documents by summing their
C(t,d) contributions. Theobald et al. [49] and Mamoulis et al. [40]
have made similar observations.

The patching computation is then one of conjunctive processing
only, with no further element of pruning orWAND-style bypass,
nor any re-sorting of candidates. As a result, it can be very efficient.
Note also that if the subqueries that have U_bound scores that fall
within the possible zone between h_threshold and Θ̂k are processed
in decreasing order of U_bound (requiring a small sorting step not
explicitly shown in Algorithm 2), then only the terms actually con-
tained in each subquery need to be processed, and it is not necessary
to locate and include score components for terms not part of the sub-
query. This restriction is correct since any documents that contain
terms outside the current subquery would have already been scored
either aspart of thefirst phase, or aspart of an earlier conjunctive sub-
query. All that is required is that a bit-vector be maintained through
the first phase that records, for each documentd ∈D, whether or not
d has yet been scored, as is assumed at step 13 in Algorithm 2. Use of
that bit-vector prevents documents being consideredmore than once
for entry to the heap, and means that as each subquery is processed,
it is exactly the subquery’s subset of the terms that need to have their

 [a,b]
 [a] [b] [c]

 [b,c] [a,c]
 [a,b,c]combinations

score numberline

h_threshold

U_bound

Θ

Θk

k

Figure 7: Example situation for three-term query in which Θ̂k is
an over-estimate of Θk . The final h_threshold and Θ̂k bound Θk
and hence one more term conjunct needs to be processed, covering
documents containing both “a” and “c”.

score contributions C(t,d) summed for matching documentsd . Note
that h_threshold continues to be dynamic, and that as subqueries of
decreasing U_bound are processed, h_threshold increases whenever
high-scoring documents are identified. The patching process can
terminate as soon as h_threshold reaches Θ̂k , or if there are no more
subquery U_bound values in the interval [h_threshold,Θ̂k].

Figure 7 provides an example of the revisedWAND-specific patch-
ing process, with Θ̂k greater than Θk , and, at the completion of

Algorithm 2 Computation ofA(D,Q) based on a estimated score
threshold and the knowledge that there are only 2q − 1 distinct
values possible for U_bound(d).
1: execute steps 1 to 13 of Algorithm 1, recording the documents
2: that get scored via a bit-vector
3: if h_threshold< Θ̂k then ▷ cannot guarantee answer
4: for each of the 2q−1 different subqueries of Q do
5: setU←U_bound[the subquery]
6: if U > Θ̂k then
7: // the subquery has already been fully considered
8: else if U <h_threshold then
9: // the subquery cannot contribute to the top k
10: else
11: // check the subquery as a Boolean conjunction
12: for each d ∈D that matches the subquery do
13: if d has not already been scored then
14: execute steps 6 to 13 of Algorithm 1,
15: scoring only for terms in the subquery
16: note in the bit-vector that d has been scored
17: return the k documents in the heap

phase one processing, the heap threshold still below Θ̂k . Of the 2q−1
combinations of query terms, only a single U_bound values is in the
critical range, and only a single second-phase query conjunct needs
to be evaluated, that for “a” ∧ “c”, and any matching documents
properly scored. Wu and Fang [54] and Daoud et al. [11] have also
observed that documents can be scored by considering the upper
bounds associated with discrete combinations of terms, and that
seeking out high U_bound combinations early in the computation
may allow small U_bound ones to be avoided.

OverestimationRefinements. Ourfinalexperimentaimstoquan-
tify the efficiency of Algorithm 2, so we compare it directly to Algo-
rithm 1 which does not implement the enhanced bounds checking.
Table 5 shows the efficiency of each algorithm. Note that, since
both Algorithms employ the sameWAND traversal in the first stage,
the first stage computation for both algorithms is equivalent. The
enhanced Algorithm 2 clearly outperforms the corresponding Algo-
rithm 1 across the more aggressive quantiles, with a much smaller
performancegapas thequantiledecreases.Withvery small quantiles,
where overprediction is rare, the enhancement is not advantageous.
However, with q = 0.50 the advantages become quite clear – the
efficiency is best for this configuration for all measures except for
the P99 tail latency, and mean performance gains over Algorithm
1 of up to 22% are observed. Table 6 provides further evidence that
the new patching algorithm greatly lowers the overprediction costs.
Clearly, the enhanced bounds checking allows early-termination
more often, improving efficiency (since a second-pass is not required
in these cases). Interestingly, the enhanced algorithm scores fewer
documents on average in the patching phase as compared to our
initial approach, which indicates that the ranked conjunction is a
suitable and efficient patching mechanism.

7 CONCLUSION
We have shown that heap threshold scores can be predicted (RQ1),
that they improve the performance of dynamic pruning algorithms

Method Time BLR

0.5 0.3 0.1 0.05 0.01

Alg-1 P50 26.6 24.7 25.9 25.4 27.6
Alg-2 21.2 22.2 24.9 26.3 27.2

Alg-1 P95 177.6 151.9 147.8 146.7 148.2
Alg-2 135.8 137.8 143.3 147.4 148.9

Alg-1 P99 379.9 287.6 268.2 267.6 266.4
Alg-2 285.9 272.2 267.1 270.2 272.6

Alg-1 Mean 51.8 44.7 44.5 44.6 45.5
Alg-2 40.3 40.8 43.1 44.9 45.9

Table 5:Algorithm 1 andAlgorithm 2 compared (WAND processing
only), using k=1,000,ClueWeb09B, and the BLR approach.

Measure BLR

0.5 0.3 0.1 0.05 0.01

Docs scored patching Alg-1 233.2 70.5 11.4 3.7 0.7
Alg-2 155.9 44.6 6.5 1.6 0.3

% requiring patching Alg-1 56.9 27.6 6.1 2.5 0.4
Alg-2 24.1 11.1 2.5 1.1 0.2

Table 6:Algorithm 1 and Algorithm 2 statistics (WAND processing
only), k=1,000,ClueWeb09B, and the BLR approach.

(RQ2), and that algorithmic variations are also possible (RQ3). We
demonstrate that the key bottleneck in predicting the initial thresh-
old is the risk of over-prediction. In order to address this problem,we
provide an additional algorithmicmodification that reduces the costs
of second pass processing. By iteratively applying ranked conjunc-
tion, the number of additional documents scored is dramatically re-
duced in theWAND algorithm, and overall efficiency improved. Our
investigation also provides evidence that further work on prediction
algorithms and dynamic score patching is warranted. The iterative
patching algorithmmight be useful in other dynamic pruning scenar-
ios as well, potentially leading to new query processing paradigms.

From themodeling perspective, one avenue for improvement is to
devise non-linear probabilistic predictors. It is possible to combine
the neural approachwith theBayesian formulation in order to obtain
predictive distributions, but this can be prohibitively slow due to
the lack of a fast, closed-form solution for inference. A compelling
alternative isGaussianProcesses (GPs) [46],which enable non-linear
models with exact inference for regression. Their predictions can
be combined withMBR in similar ways, as explored by Beck et al.
[1]. While standard GPs can be difficult to scale, recently proposed
scalable alternatives [21] could provide a way to enable efficient
probabilistic non-linear predictions. Another avenue is to explore
different asymmetric loss functions, such as the linear exponential
[52], which is commonly used in econometrics. The problem of pre-
dictingwhich quantile is suitable on a per-query basis is a promising
avenue for even further efficiency gains.

Afinal area for exploration is reducing (or compressing) themodel
features. The large index footprint of our proposals renders them of

marginal value for practical deployment, and a smaller model would
help make these techniques more attractive to system developers.

Acknowledgment. The third author was supported by an Aus-
tralian Research Training Program Scholarship. The fifth authorwas
suppported by the Australian Research Council (DP160102686).

REFERENCES
[1] D. Beck, L. Specia, and T. Cohn. Exploring prediction uncertainty in machine

translation quality estimation. In Proc. CoNLL, pages 208–218, 2016.
[2] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query

evaluation using a two-level retrieval process. In Proc. CIKM, pages 426–434, 2003.
[3] C. Burges. From RankNet to LambdaRank to LambdaMart: An overview. Learning,

11(23-581):81, 2010.
[4] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and

J. Degenhardt. Early exit optimizations for additive machine learned ranking
systems. In Proc. WSDM, pages 411–420, 2010.

[5] R.-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware
cascade ranking in multi-stage retrieval. In Proc. SIGIR, pages 445–454, 2017.

[6] P. F. Christoffersen and F. X. Diebold. Optimal prediction under asymmetric loss.
Econometric Theory, 13(06):808–817, 1997.

[7] C. L. A. Clarke, J. S. Culpepper, and A. Moffat. Assessing efficiency-effectiveness
tradeoffs in multi-stage retrieval systems without using relevance judgments.
Inf. Retr., 19(4):351–377, 2016.

[8] N. Craswell, R. Jones, G. Dupret, and E. Viegas, editors. Proc. 2009 Workshop on
Web Search Click Data: WSCD@WSDM. ACM, 2009.

[9] J. S. Culpepper, C. L. A. Clarke, and J. Lin. Dynamic cutoff prediction inmulti-stage
retrieval systems. In Proc. Aust. Doc. Comp. Symp., pages 17–24, 2016.

[10] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforce-
ment learning with quantile regression. In Proc. AAAI, pages 2892–2901, 2018.

[11] C. M. Daoud, E. S. deMoura, D. Fernandes, A. S. da Silva, C. Rossi, and A. Carvalho.
Waves: A fast multi-tier top-k query processing algorithm. Inf. Retr., 20(3):
292–316, 2017.

[12] D. Dato, C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and
R. Venturini. Fast ranking with additive ensembles of oblivious and non-oblivious
regression trees. ACM Trans. Inf. Sys., 35(2):15.1–15.31, 2016.

[13] L. L. S. de Carvalho, E. S. de Moura, C. M. Daoud, and A. S. da Silva. Heuristics
to improve the BMWmethod and its variants. J. Data Inf. Qual., 6:178–191, 2015.

[14] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and A. Shalita.
Compressing graphs and indexes with recursive graph bisection. In Proc. KDD,
pages 1535–1544, 2016.

[15] C. Dimopoulos, S. Nepomnyachiy, and T. Suel. Optimizing top-k document
retrieval strategies for block-max indexes. In Proc. WSDM, pages 113–122, 2013.

[16] S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes.
In Proc. SIGIR, pages 993–1002, 2011.

[17] M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. Evaluation
strategies for top-k queries over memory-resident inverted indexes. Proc. VLDB,
4(12):1213–1224, 2011.

[18] J. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29(5):1189–1232, 2001.

[19] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In Proc. ICML, pages 1050–1059, 2016.

[20] Y. He, J. Tang, H. Ouyang, C. Kang, D. Yin, and Y. Chang. Learning to rewrite
queries. In Proc. CIKM, pages 1443–1452, 2016.

[21] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proc.
UAI, pages 282–290, 2013.

[22] P. J. Huber. Robust estimation of a location parameter. Ann. Math. Statist., 35(1):
73–101, 1964.

[23] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proc. ICML, pages 448–456, 2015.

[24] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast exe-
cution of ensemble-based score computation. In Proc. SIGIR, pages 629–638, 2016.

[25] A. Kane and F. W. Tompa. Split-lists and initial thresholds for WAND-based
search. In Proc. SIGIR, pages 877–880, 2018.

[26] Y. Kim, J. Callan, J. S. Culpepper, and A. Moffat. Does selective search benefit from
WAND optimization? In Proc. ECIR, pages 145–158, 2016.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc.
ICLR, pages 1–15, 2015.

[28] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned
index structures. In Proc. SIGMOD, pages 489–504, 2018.

[29] C. Louizos, K. Ullrich, andM.Welling. Bayesian compression for deep learning.
In Proc. NeurIPS, pages 3288–3298, 2017.

[30] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini.
Quickscorer: A fast algorithm to rank documents with additive ensembles of
regression trees. In Proc. SIGIR, pages 73–82, 2015.

[31] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini.
Exploiting CPU SIMD extensions to speed-up document scoring with tree
ensembles. In Proc. SIGIR, pages 833–836, 2016.

[32] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. X-DART: Blending
dropout and pruning for efficient learning to rank. In Proc. SIGIR, pages 1077–1080,
2017.

[33] C. Macdonald, N. Tonellotto, and I. Ounis. Efficient and effective selective query
rewriting with efficiency predictions. In Proc. SIGIR, pages 495–504, 2017.

[34] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.
[35] J. Mackenzie, J. S. Culpepper, R. Blanco, M. Crane, C. L. A. Clarke, and J. Lin.

Query driven algorithm selection in early stage retrieval. In Proc. SIGIR, pages
396–404, 2018.

[36] J. Mackenzie, A. Mallia, M. Petri, J. S. Culpepper, and T. Suel. Compressing
inverted indexes with recursive graph bisection: A reproducibility study. In Proc.
ECIR, pages 339–352, 2019.

[37] A. Mallia and E. Porciani. Faster BlockMaxWANDwith longer skipping. In Proc.
ECIR, pages 771–778, 2019.

[38] A. Mallia, G. Ottaviano, E. Porciani, N. Tonellotto, and R. Venturini. Faster
BlockMaxWANDwith variable-sized blocks. In Proc. SIGIR, pages 625–634, 2017.

[39] A. Mallia, M. Siedlaczek, and T. Suel. An experimental study of index compression
and DAAT query processing methods. In Proc. ECIR, pages 353–368, 2019.

[40] N.Mamoulis,M. L. Yiu, K.H. Cheng, andD.W.Cheung. Efficient top-k aggregation
of ranked inputs. ACM Trans. Data. Sys., 32(3):19, 2007.

[41] B. Mitra and N. Craswell. An introduction to neural information retrieval. Found.
Trnd. Inf. Retr., 13(1):1–126, 2018.

[42] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
[43] G. Ottaviano and R. Venturini. Partitioned Elias-Fano indexes. In Proc. SIGIR,

pages 273–282, 2014.
[44] S. Peter, F. Diego, F. A. Hamprecht, and B. Nadler. Cost efficient gradient boosting.

In Proc. NeurIPS, pages 1550–1560, 2017.
[45] M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic ofWAND. In Proc.

Aust. Doc. Comp. Symp., pages 58–65, 2013.
[46] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006.
[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15:1929–1958, 2014.

[48] T. Strohman, H. R. Turtle, andW. B. Croft. Optimization strategies for complex
queries. In Proc. SIGIR, pages 219–225, 2005.

[49] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with
probabilistic guarantees. In Proc. VLDB, pages 648–659, 2004.

[50] N. Tonellotto, C. Macdonald, and I. Ounis. Efficient and effective retrieval using
selective pruning. In Proc. WSDM, pages 63–72, 2013.

[51] H. R. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Inf.
Proc. & Man., 31(6):831–850, 1995.

[52] H. Varian. A Bayesian approach to real estate assessment. In S. E. Fienberg and
A. Zellner, editors, Studies in Bayesian Econometrics and Statistics in Honor of
Leonard J. Savage, pages 195–208. 1975.

[53] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked
retrieval. In Proc. SIGIR, pages 105–114, 2011.

[54] H. Wu and H. Fang. Document prioritization for scalable query processing. In
Proc. CIKM, pages 1609–1618, 2014.

[55] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Classifier
cascades and trees for minimizing feature evaluation cost. J. Mach. Learn. Res.,
15:2113–2144, 2014.

[56] D. Yin, Y. Hu, J. Tang, T. Daly, M. Zhou, H. Ouyang, J. Chen, C. Kang, H. Deng,
C. Nobata, J.-M. Langlois, and Y. Chang. Ranking relevance in Yahoo search. In
Proc. KDD, pages 323–332, 2016.

[57] H. Zamani, M. Dehghani, W. B. Croft, E. Learned-Miller, and J. Kamps. From
neural re-ranking to neural ranking: Learning a sparse representation for inverted
indexing. In Proc. CIKM, pages 497–506, 2018.

	Abstract
	1 Introduction
	2 Background
	3 Exploring Potential Gains
	4 Threshold Prediction Models
	5 Experiments
	6 Refinements
	7 Conclusion
	References

