A Common Framework for Exploring Document-at-a-Time and
Score-at-a-Time Retrieval Methods

Andrew Trotman
Department of Computer Science
University of Otago
Dunedin, New Zealand

Pradeesh Parameswaran
Department of Computer Science
University of Otago
Dunedin, New Zealand

ABSTRACT

Document-at-a-time (DAAT) and score-at-a-time (SAAT) query eval-
uation techniques are different approaches to top-k retrieval with
inverted indexes. While modern systems are dominated by DAAT,
the academic literature has seen decades of debate about the merits
of each. Recently, there has been renewed interest in SAAT meth-
ods for learned sparse lexical models, where studies have shown
that transformers generate “wacky weights” that appear to reduce
opportunities for optimizations in DAAT methods. However, re-
searchers currently lack an easy-to-use SAAT system to support
further exploration. This is the gap that our work fills. Starting
with a modern SAAT system (JASS), we built Python bindings in
order to integrate into the DAAT Pyserini IR toolkit (Lucene). The
result is a common frontend to both a DAAT and a SAAT system. We
demonstrate how recent experiments with a wide range of learned
sparse lexical models can be easily reproduced. Our contribution
is a framework that enables future research comparing DAAT and
SAAT methods in the context of modern neural retrieval models.

CCS CONCEPTS

« Information systems — Search engine architectures and
scalability.

KEYWORDS
Anserini, JASS, Python, Efficiency, Procrastination

ACM Reference Format:

Andrew Trotman, Joel Mackenzie, Pradeesh Parameswaran, and Jimmy
Lin. 2022. A Common Framework for Exploring Document-at-a-Time and
Score-at-a-Time Retrieval Methods. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR °22), July 11-15, 2022, Madrid, Spain. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3477495.3531657

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR °22, July 11-15, 2022, Madrid, Spain

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07...$15.00
https://doi.org/10.1145/3477495.3531657

Joel Mackenzie
School of Information Technology and Electrical
Engineering
The University of Queensland
Brisbane, Australia

Jimmy Lin
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Canada

1 INTRODUCTION

Despite rapid advances in neural ranking models, primarily driven
in the past few years by pretrained transformer models, the humble
decades-old inverted index and similarly old “traditional” bag-of-
words query evaluation techniques remain indispensable, primarily
for two reasons:

(1) A large class of neural models, generally known as cross en-
coders, operate as rerankers over initial candidates generated
by a first-stage retriever [2, 18, 22]. Furthermore, fusion meth-
ods that combine scores derived from transformer-based repre-
sentations with a bag-of-words scoring method such as BM25
generally outperform either alone [11, 18, 21, 34].

(2) Researchers have had much success with a class of models
known as learned sparse models, which generate lexical (i.e.,
bag-of-words) representations with weights that are derived
from transformers. That is, neural models are trained to gener-
ate term weights that maximize some retrieval objective given
large amounts of supervised training data. These term weights
can be viewed as impact scores [1], and retrieval with these
models can be directly performed using inverted indexes.

At a high level, query evaluation techniques for the top-k retrieval
problem with inverted indexes can be divided into document-at-
a-time (DAAT) and score-at-a-time (SAAT) methods. The advan-
tages and disadvantages of each have been the subject of academic
debate for decades [1, 5, 7, 33], although for practical purposes,
DAAT methods dominate production systems today. For example,
the open-source Lucene search library, perhaps the most widely
deployed search platform today, uses DAAT methods [10].

However, SAAT methods are drawing renewed interest, at least
by the academic community. Recently, Mackenzie et al. [24] demon-
strated that, in the context of learned sparse lexical models, SAAT
methods have certain appealing characteristics. They can be faster
than DAAT methods under certain settings, and exhibit far less
variability in query evaluation latency (e.g., much greater control
for so-called “tail latency”) [5]. Furthermore, they can have smaller
indexes, and overall their implementations are simpler.

The research community currently lacks an easy-to-use toolkit to
further explore DAAT and SAAT methods, especially in the context
of modern neural models. Our work fills this gap via a common
Python-based frontend that integrates both Lucene (a DAAT system)

https://orcid.org/0000-0003-1253-7123
https://orcid.org/0000-0001-7992-4633
https://orcid.org/0000-0002-0140-0781
https://orcid.org/0000-0002-0661-7189
https://doi.org/10.1145/3477495.3531657
https://doi.org/10.1145/3477495.3531657

and JASS (a SAAT system) in the Pyserini IR toolkit [16] through
PyJASS, a Python wrapper for JASS.

As a demonstration of these capabilities, this integration allows
the Lucene and JASS experiments presented by Mackenzie et al. [24]
to be reproduced with ease (whereas the original paper required
working with disparate systems). Our common framework enables
future explorations of DAAT and SAAT methods.

2 DEMONSTRATION

We begin “at the end” to demonstrate the final result of our efforts.
Consider uniCOIL [15], a recent learned sparse lexical model. With
the Pyserini IR toolkit [16], reproducing a run on the popular MS
MARCO passage ranking task with the development queries using
Lucene can be accomplished with a single command:

python -m pyserini.search.lucene \
--index msmarco-passage-unicoil-d2q \
--topics msmarco-passage-dev-subset-unicoil \
--output runs/run.msmarco-passage.unicoil.tsv \
--output-format msmarco \
--batch 36 --threads 12 \
--hits 1000 \
--impact

Most of the options are self explanatory, but a few key features
are worth explicitly pointing out. The value of the --index op-
tion, msmarco-passage-unicoil-d2q, refers to a pre-built index that
Pyserini will download from a known location the first time the
command is invoked; the index will be cached locally for subse-
quent reuse. Similarly, the pre-tokenized queries are also hosted at a
known location, and will be downloaded and cached. Pyserini itself
is published as an artifact on PyPI, which means that everything
needed to reproduce this run is self-contained. Once the pyserini
package is installed, the user does not need anything else. Batteries
are included.

The above capability already exists as described by Lin et al. [16].
However, until now, Pyserini depended on Lucene as its “retrieval
backend”. The contribution of this work is that we have integrated
JASS as another backend alongside Lucene. Thus, to perform the
same run with JASS, we can issue the following command:

python -m pyserini.search.jass \
--index jass-msmarco-passage-unicoil-d2q \
--topics msmarco-passage-dev-subset-unicoil \
--output runs/run.msmarco-passage.unicoil.tsv \
--output-format msmarco \
--batch 36 --threads 12 \
--hits 1000 \
--impact

The main distinction here is that instead of calling the main driver
program in pyserini.search.lucene, we call pyserini.search. jass
instead. In other words, we have a consistent frontend for both a
DAAT system (Lucene) and a SAAT system (JASS).!

In concrete terms, what “win” does this capability create for
researchers and practitioners in our community? For those simply
“using” learned sparse lexical models as the first-stage retriever

Note that both Lucene and JASS also have system-specific parameters which can be
set at search time.

in a multi-stage ranking architecture, Pyserini supports seamless
switching between different backends. As our experiments later
show, using the JASS backend is much faster, so users get a boost
in speed “for free”. For researchers interested in further exploring
DAAT vs. SAAT methods in the context of modern learned sparse lex-
ical representations, a uniform frontend streamlines experimental
practice and enables fair “apples to apples” comparisons.

For both use cases, Python is a key selling point, since Python
has emerged as the lingua franca of IR research today in the context
of neural models since all the major deep learning toolkits (PyTorch
and Tensorflow) have adopted Python as the frontend language.
The Pyserini driver programs above in turn call wrapper objects
around Lucene and JASS, and both provide easy-to-use APIs that
support deeper code integration.

3 IMPLEMENTATION

Having described the “final product” of our efforts, we turn our
attention to the implementation details. We start with an overview
of Pyserini as it existed prior to this work. JASS was integrated in
two steps: As it was written in C++, we first built PyJASS, which
provides a Python wrapper for JASS. To align APIs and the actual
frontend (described in the previous section), we had to write fur-
ther wrapper classes around PyJASS in Pyserini. These details are
described below.

3.1 Pyserini

Anserini [36, 37] began as an effort to better align the research
and practice of building search applications via the creation of a
research-focused IR toolkit around the open-source Lucene search
library, which lies at the core of widely deployed platforms such as
Solr and Elasticsearch. Pyserini [16] began as a lightweight Python
wrapper to Anserini for the Python-centric world of deep learning
(as Anserini, like Lucene, was implemented in Java). However, it has
since evolved into a toolkit for reproducible information retrieval
research with sparse and dense representations, integrating support
for dense retrieval models [14, 18, 20, 35] via Facebook’s Faiss
library [13]. Thus, Lucene and Faiss form the two primary backends
in Pyserini, for retrieval with sparse (i.e., bag-of-words) and dense
representations, respectively.

Taking another step towards the goal of better aligning academia
and industry, recent work has demonstrated seamless replicability
and interoperability between Elasticsearch and Pyserini [6]. For
academic researchers, such efforts illustrate the potential real-world
impact of laboratory innovations by providing a plausible trans-
lation path to real-world deployments. For industry practitioners,
this integration provides access to evaluation resources and infras-
tructure built by the academic community. This two-way exchange
is mutually beneficial, and the efforts described here add JASS as
another backend alongside Lucene, further expanding the scope of
potential academic-industrial exchanges.

3.2 JASS

As far as we are aware, JASS (v2) [19, 31] is the only actively main-
tained open-source SAAT search engine available today. It is written
in C++ 17 and runs on Mac and Linux. At present, a modern In-
tel CPU is required because, internally, JASS uses SIMD-enhanced

Elias Gamma compression [32], which in turn relies on AVX2 in-
structions (or AVX-512 instructions if available).

SaAT search engines rely on an indexing phase in which the
contribution of a term to a document—its impact score—is computed
and stored in the index as a small integer. A consequence of this is
that the ranking function at retrieval (search) time boils down to
integer addition. But unlike DAAT, partial scores must be stored for
each document that might be in the top-k. These are traditionally
stored in an array of accumulators that spans the entire document
space, which can make SAAT slow.

As a solution to this challenge, JASS uses a page-table like struc-
ture to only allocate and initialize accumulators that are at or near
the documents scored during index traversal. In prior work [12],
this innovation has been shown to be one of the main reasons why
JASS can process the postings so quickly—it doesn’t allocate or
initialize accumulators that aren’t used.

As an anytime search engine, the tradeoff between effectiveness
and efficiency in JASS is controlled using p, a parameter that speci-
fies the proportion of the postings that should be processed [19, 23].
Previous experiments have found that setting p to a fixed value
corresponding to 10% of the number of documents in the collection
represents a “sweet spot” for balancing efficiency and effective-
ness [19].

3.3 PyJASS

As a standalone search engine, JASS of course has its own fron-
tend, which was used to produce the experimental results reported
by Mackenzie et al. [24]. However, the point of our work is to enable
seamless integration, and to that end, the first step was to produce
Python bindings for JASS. PyJASS provides Python bindings for
JASS, and is available as an artifact on the Python Package Index
(PyPI). That is, PyJASS can be used independently as a Python in-
terface to JASS, but it is the integration with Pyserini (more below)
that provides the common frontend discussed in Section 2.

Producing bindings from C++ to any other language can be
laborious, but fortunately there are several tools that help automate
this process. We chose SWIG [4], as we have used it in the past
for other projects. Using SWIG, it is straightforward to write the
bindings interface, and the tool is generally well supported. Indeed,
our SWIG interface file simply includes a bunch of C++ header files
we were already using for the C++ APIs.

To generate the Python-specific bindings we invoke SWIG con-
figured to produce Python bindings, and then compile JASS and
the SWIG-generated wrapper into a shared object. At the end of
the build process we obtain two files: pyjass.py and _pyjass.so,
which comprise the Python interface itself and JASS in a library, re-
spectively. With additional packaging, PyJASS is available on PyPI,
and can be installed with standard tools such as pip. For ease of
installation, we recommend using the Anaconda package manager,
and our documentation provides instructions for doing so.

3.4 Final Integration

While it is possible, in principle, to integrate JASS directly in Py-
serini, the approach we took allows PyJASS to stand independently
as a self-contained search engine. We can think of several scenarios

in which this would be useful, for example, to aid further develop-
ment of JASS by providing a lightweight, scriptable mechanism for
debugging and analysis.

However, to enable seamless integration, we needed to write
additional Python wrapper classes to bring the PyJASS API and
Pyserini APl into alignment. In Pyserini, pyserini.search.lucene is
a “main” driver program that manages the query lifecycle, dispatch-
ing to the LuceneSearcher class, which is itself a wrapper around
functionalities implemented in Java that access Lucene directly. The
searcher object has a search method and a batch_search method
(for multi-threaded searching), along with many other convenience
and utility methods. The driver program manages the entire process
of generating a standard TREC run: reading topic files to extract
queries, sending queries to the searcher object, gathering results,
and writing the ranked lists to a final run file.

The implementation in pyserini.search. jass follows exactly the
same design. We have implemented the JASSv2Searcher class with
essentially the same API, managed by a main driver class in the
same way as with Lucene. The final product is seamless integration,
supporting the one-command reproduction examples presented in
Section 2.

3.5 Additional Tooling

Our integration efforts have focused on a common frontend for
querying. At present, JASS and Pyserini maintain separate index-
ing pipelines. Pyserini (via Anserini) builds indexes using Lucene,
and provides support for a multitude of document formats (TREC
format, JSON, WARCsS, etc.). Similarly, JASS has its own indexer
that supports TREC formats and CIFF, the Common Index File For-
mat [17]. It is worth noting that indexing pipelines and additional
tooling around manipulating corpora are largely “out of scope”
with respect to the goals we hope to achieve here. In truth, it is
neither desirable nor possible to build a common framework for
these capabilities. We explain below.

By definition, DAAT and SAAT systems require different index
organizations, and any integration effort will necessarily be superfi-
cial (e.g., wrappers). At least for researchers, indexing is a one-time
event since work is focused on relatively few common test collec-
tions, for which we already provide pre-built indexes. Thus, many
researchers may never need to touch an indexer.

Furthermore, building the inverted indexes is merely the final
stage in a long sequence of corpus preparation steps that start with
a neural retrieval model. Obviously, how to train these models is
beyond the scope of our work. However, even given a model, the
researcher next needs to encode the entire corpus—i.e., generate the
representations that correspond to each document. While there are
some commonalities, models can also be idiosyncratic. Furthermore,
encoding text into vector representations requires GPUs in practice,
which brings in its own infrastructure requirements.

Thus, we currently believe that attempts to integrate data prepa-
ration and indexing are not worthwhile. Nevertheless, data abstrac-
tions remain helpful: For example, we have standardized on a cor-
pus representation for learned sparse lexical retrieval models. Since
they are, for each document, a mapping from tokens to weights, a
JSON-based interchange format is straightforward. In our current
implementation, both the Pyserini and JASS indexers take corpora

in this format as input, and are agnostic with respect to how these
representations are generated. Furthermore, other exchange tools
and formats, such as the Common Index File Format [17], can be
used to facilitate easy index interchange.

4 EXPERIMENTS

The primary demonstration of the capabilities that we’ve built is
easy reproduction of the results of Mackenzie et al. [24], along
the lines of the self-contained Pyserini commands shown in Sec-
tion 2. In contrast, the original paper required working with three
disparate systems: this work brings Lucene and JASS under a com-
mon frontend. Mackenzie et al. [24] explored a third DAAT system,
PISA [26], which lies beyond the scope of these integration efforts,
and thus we do not present those results here. We begin by sum-
marizing the experimental conditions explored in that work and
then present experimental results.

4.1 Setup and Configurations

Experiments used the MS MARCO passage corpus [3], which com-
prises 8.8M passages drawn from paragraph-length extracts gener-
ated by Bing’s question answering module. On the 6980 queries in
the development set, we evaluated the following models:

BM25 [30] over bag-of-words representations of the corpus pas-
sages, with k; = 0.82 and b = 0.68, following Lin et al. [16].

BM25 w/ doc2query-T5 (BM25-T5 for short) represents a doc-
ument expansion condition where the corpus is augmented with
predictions generated by doc2query [27, 28] using the T5 [29] neu-
ral sequence-to-sequence model. Ranking is still performed using
BM25 scoring (i.e., does not involve neural inference).

DeepImpact [25] is an example of a retrieval model based on
learned sparse lexical representations. Candidate terms in each doc-
ument that should be assigned non-zero weights by the transformer
model are generated from doc2query-T5.

uniCOIL + doc2query-T5 [15] (uniCOIL-T5 for short) is a simpli-
fication of the COIL model [9]. Instead of generating vector weights,
uniCOIL produces scalar weights, using doc2query-T5 as the source
for candidate terms (like DeepImpact).

uniCOIL + TILDE [38] (uniCOIL-TILDE for short) replaces candi-
date term selection using doc2query-T5 with an alternative model
based on TILDE [39].

SPLADEV2 [8] learns sparse lexical representations of documents
using the masked language model (MLM) head in BERT. One advan-
tage is that using the MLM head replaces the need for an explicit
expansion step, compared to, for example, using doc2query-T5.

All models in our experiments are based on the implementations
described by Mackenzie et al. [24]. JASS indexes are built using
CIFF extracts [17] from Lucene, so the indexes contain exactly the
same information. For the learned sparse lexical models, we use
the “pseudo-document trick” to take advantage of existing indexing
pipelines. For each document (from the JSON corpus format de-
scribed in Section 3.5), the indexer creates a “fake document” where
a term is repeated the same number of times as its (quantized) inte-
ger weight assigned by the neural model. This value is stored in the
term frequency position of a standard inverted index. For retrieval,

Lucene JASS Speedup

BM25 66 13 5.1%
BM25-T5 101 33 3.1%
DeepImpact 209 51 4.1x
uniCOIL-T5 211 150 1.4x
uniCOIL-TILDE 193 83 2.3%
SPLADEv2 1042 308 3.4%
Total 1822 638 2.9%

Table 1: Total end-to-end running time (in seconds) for pro-
cessing the development queries of the MS MARCO passage
ranking task, with 32 threads and a batch size of 100.

we simply use a scoring function that computes the sum of term fre-
quencies. Note that we perform search using pre-tokenized queries;
query inference (with the neural models) is conducted offline.

We report results for retrieving the top k = 1000 documents,
which would be suitable for use as a first-stage retriever in a multi-
stage ranking pipeline. All experiments were conducted in memory
on a Linux machine with two 3.50 GHz Intel Xeon Gold 6144 CPUs
and 512 GiB of RAM. We evaluate both single thread and multi-
thread performance, detailed below; the latter implementation is
based on intra-query parallelism with query batches.

4.2 Results

To illustrate the usefulness of our common interface, we report
results on two sets of experiments.

Table 1 presents our first experiment, which shows the benefit of
using JASS as the retrieval backend within Pyserini for accelerated
experimentation, focused on query throughput. Here, a hypotheti-
cal researcher is interested in evaluating the six models described
above on the MS MARCO queries as quickly as possible, using all
available processing power; on our test machine, this translates into
running experiments on 32 threads and a batch size of 100. The table
shows the end-to-end running time of pyserini.search.lucene and
pyserini.search. jass, which includes the time for reading indexes
and queries, computing the rankings, and writing the output files.
The final column notes the speedup of JASS relative to Lucene. In
total, across all experiments, we observe that JASS is approximately
three times faster than Lucene.

Our second experiment demonstrates the use of our common
interface for experimenting with effectiveness/efficiency tradeoffs.
Table 2 shows these results. For each model, we report output
quality, measured in terms of mean reciprocal rank at cutoff 10
(RR@10), the official metric of the test collection, query latency
in milliseconds, and index size measured in megabytes. We also
report the mean latency from the “base” version of both Anserini
(Java) and JASS (C++) to quantify the overheads caused by the
Python bindings. Quality and space figures are identical to a similar
table in Mackenzie et al. [24] (obviously, since we are reproduc-
ing those results), but latency figures are different; we find that
the Python bindings cause some overhead in both cases, but are
more pronounced with the Lucene backend. With the PyJASS back-
end, search takes only a fraction of a millisecond longer than the
underlying C++ implementation.

Quality Time (ms) Space
Method RR@10 Base Python MiB
Anserini (Lucene): DAAT
BM25 0.187 38.8 46.1 661
BM25-T5 0.277 62.6 71.5 1036
DeepImpact 0.325 2354 248.4 1417
uniCOIL-T5 0.352 209.7 215.8 1313
uniCOIL-TILDE 0.350 171.4 183.6 2067
SPLADEv2 0.369 2087.5 2068.8 4987
JASS: SAAT
BM25 0.187 7.9 8.0 729
BM25-T5 0.277 28.9 29.0 947
DeepImpact 0.326 22.4 22.4 1354
uniCOIL-T5 0.352 96.1 96.2 1139
uniCOIL-TILDE 0.350 53.9 53.9 1782
SPLADEv2 0.369 219.3 219.5 3595

Table 2: Experimental results on the development queries of
the MS MARCO passage ranking test collection. Latency is
reported as the mean response time using a single thread.

Confirming the results of Mackenzie et al. [24], we observe JASS
to be substantially faster than Lucene, with both approaches yield-
ing the same effectiveness. But this isn’t exactly a fair comparison
because Lucene provides full-featured, production-ready search
infrastructure, while JASS is a research system with little in the
way of bells and whistles. This is a bit like comparing the speed of a
family sedan with a stock race car. With the former, you can safely
transport your family in comfort. The latter doesn’t have cuphold-
ers or even doors that open. The main point of this exercise is to
demonstrate that we have successfully built a common frontend to
support future explorations of DAAT and SAAT methods.

5 CONCLUSIONS

The work reported here represents an instance of our broader ef-
forts to build easy-to-use tools in support of reproducible research
in information retrieval. Modern IR research, with its heavy em-
phasis on neural models, has evolved into a complex mishmash of
different toolkits and environments. However, the Python language
appears to be the glue that holds everything together, even when
the underlying implementations are written in C++ and Java. Py-
serini builds on this foundation and leverages standard tooling (e.g.,
PyPI packages) and best practices to the extent possible, with the
aim of “reducing friction” for IR researchers. The demonstration
described here is a step towards our broader vision. Looking again
at Mackenzie et al. [24], the obvious next step would be to integrate
the PISA search engine [26], which will get us closer to “the one
frontend to rule them all”. We look forward to pursuing this in
future work.

ACKNOWLEDGEMENTS

This research was partially supported by the Australian Research
Council Discovery Project DP200103136 and the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

REFERENCES

[1] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. 2001. Vector-Space Ranking
with Effective Early Termination. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2001). 35-42.

[2] Nima Asadiand Jimmy Lin. 2013. Effectiveness/Efficiency Tradeoffs for Candidate
Generation in Multi-Stage Retrieval Architectures. In Proceedings of the 36th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2013). Dublin, Ireland, 997-1000.

[3] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong
Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2018.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.
arXiv:1611.09268v3 (2018).

[4] David M. Beazley. 2003. Automated Scientific Software Scripting With SWIG.
Future Generation Computer Systems 19, 5 (2003), 599-609.

[5] Matt Crane, J. Shane Culpepper, Jimmy Lin, Joel Mackenzie, and Andrew Trot-
man. 2017. A Comparison of Document-at-a-Time and Score-at-a-Time Query
Evaluation. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining (WSDM 2017). 201-210.

[6] Josh Devins, Julie Tibshirani, and Jimmy Lin. 2022. Aligning the Research and

Practice of Building Search Applications: Elasticsearch and Pyserini. In Proceed-

ings of the 15th ACM International Conference on Web Search and Data Mining

(WSDM 2022). 1573-1576.

Marcus Fontoura, Vanja Josifovski, Jinhui Liu, Srihari Venkatesan, Xiangfei Zhu,

and Jason Zien. 2011. Evaluation Strategies for Top-k Queries over Memory-

Resident Inverted Indexes. Proc. VLDB Endow. 4, 12 (2011), 1213-1224.

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.

2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval.

arXiv:2109.10086 (2021).

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match

in Information Retrieval with Contextualized Inverted List. In Proceedings of the

2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Online, 3030-3042.

Adrien Grand, Robert Muir, Jim Ferenczi, and Jimmy Lin. 2020. From Max-

Score to Block-Max WAND: The Story of How Lucene Significantly Improved

Query Evaluation Performance. In Proceedings of the 42nd European Conference

on Information Retrieval, Part II (ECIR 2020). 20-27.

Sebastian Hofstatter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan

Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with Balanced

Topic Aware Sampling. In Proceedings of the 44th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR 2021).

113-122.

Xiang-Fei Jia, Andrew Trotman, and Richard O’Keefe. 2010. Efficient accumula-

tor initialisation. In Proceedings of the 15th Australasian Document Computing

Symposium. 44-51.

[13] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-scale similarity

search with GPUs. IEEE Transactions on Big Data 7, 3 (2021), 535-547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Dangi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-

Domain Question Answering. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP). Online, 6769-6781.

[15] Jimmy Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL, and
a Conceptual Framework for Information Retrieval Techniques. arXiv:2106.14807
(2021).

[16] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Informa-
tion Retrieval Research with Sparse and Dense Representations. In Proceedings of
the 44th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR 2021). 2356-2362.

[17] Jimmy Lin, Joel Mackenzie, Chris Kamphuis, Craig Macdonald, Antonio Mallia,
Michat Siedlaczek, Andrew Trotman, and Arjen de Vries. 2020. Supporting
Interoperability Between Open-Source Search Engines with the Common Index
File Format. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2020). 2149-2152.

[18] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained Transformers
for Text Ranking: BERT and Beyond. Morgan & Claypool Publishers.

[19] Jimmy Lin and Andrew Trotman. 2015. Anytime Ranking for Impact-Ordered

Indexes. In Proceedings of the ACM International Conference on the Theory of

Information Retrieval (ICTIR 2015). 301-304.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-Batch Negatives

for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval.

In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-

2021). 163-173.

Xueguang Ma, Kai Sun, Ronak Pradeep, Minghan Li, and Jimmy Lin. 2022. Com-

paring Score Aggregation Approaches for Document Retrieval with Pretrained

7

[8

=

[10

[11

=
)

[14

[20

[21

Transformers. In Proceedings of the 44th European Conference on Information
Retrieval (ECIR 2022), Part I. Stavanger, Norway, 613-626.

Joel Mackenzie, J. Shane Culpepper, Roi Blanco, Matt Crane, Charles L. A. Clarke,
and Jimmy Lin. 2018. Query driven algorithm selection in early stage retrieval.
In Proceedings of the 11th ACM International Conference on Web Search and Data
Mining (WSDM 2018). 396-404.

Joel Mackenzie, Falk Scholer, and J. Shane Culpepper. 2017. Early Termina-
tion Heuristics for Score-at-a-Time Index Traversal. In Proceedings of the 22nd
Australasian Document Computing Symposium (ADCS 2017). 8.1-8.8.

[24] Joel Mackenzie, Andrew Trotman, and Jimmy Lin. 2021. Wacky Weights in

Learned Sparse Representations and the Revenge of Score-at-a-Time Query
Evaluation. arXiv:2110.11540 (2021).

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021. Learn-
ing Passage Impacts for Inverted Indexes. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2021). 1723-1727.

Antonio Mallia, Michat Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant Indexes and Search for Academia. In Proceedings of the Open-Source
IR Replicability Challenge (OSIRRC 2019): CEUR Workshop Proceedings Vol-2409.
50-56.

Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTTquery.
Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
Expansion by Query Prediction. arXiv:1904.08375 (2019).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1-67.

Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Foundations and Trends in Information Retrieval 3, 4
(2009), 333-389.

Andrew Trotman and Matt Crane. 2019. Micro- and Macro-optimizations of
SAAT Search. Software: Practice and Experience 49, 5 (2019), 942-950.

Andrew Trotman and Kat Lilly. 2018. Elias Revisited: Group Elias SIMD Coding.
In Proceedings of the 23rd Australasian Document Computing Symposium (ADCS
2018). Article 4, 8 pages.

Howard R. Turtle and James Flood. 1995. Query Evaluation: Strategies and
Optimizations. Information Processing & Management 31, 6 (1995), 831-850.
Shuai Wang, Shengyao Zhuang, and Guido Zuccon. 2021. BERT-Based Dense
Retrievers Require Interpolation with BM25 for Effective Passage Retrieval. In
Proceedings of the 44th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2021). 317-324.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In Proceedings of the 9th
International Conference on Learning Representations (ICLR 2021).

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of
Lucene for Information Retrieval Research. In Proceedings of the 40th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2017). Tokyo, Japan, 1253-1256.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible Ranking
Baselines Using Lucene. Journal of Data and Information Quality 10, 4 (2018),
Article 16.

Shengyao Zhuang and Guido Zuccon. 2021. Fast Passage Re-ranking with Contex-
tualized Exact Term Matching and Efficient Passage Expansion. arXiv:2108.08513
(2021).

Shengyao Zhuang and Guido Zuccon. 2021. TILDE: Term Independent Likelihood
moDEl for Passage Re-ranking. In Proceedings of the 44th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR 2021). 1483-1492.

	Abstract
	1 Introduction
	2 Demonstration
	3 Implementation
	3.1 Pyserini
	3.2 JASS
	3.3 PyJASS
	3.4 Final Integration
	3.5 Additional Tooling

	4 Experiments
	4.1 Setup and Configurations
	4.2 Results

	5 Conclusions
	References

