CC-News-En: A Large English News Corpus


We describe a static, open-access news corpus using data from the Common Crawl Foundation, who provide free, publicly available web archives, including a continuous crawl of international news articles published in multiple languages. Our derived corpus, CC-News-En, contains 44 million English documents collected between September 2016 and March 2018. The collection is comparable in size with the number of documents typically found in a single shard of a large-scale, distributed search engine, and is four times larger than the news collections previously used in offline information retrieval experiments. To complement the corpus, 173 topics were curated using titles from Reddit threads, forming a temporally representative sampling of relevant news topics over the 583 day collection window. Information needs were then generated using automatic summarization tools to produce textual and audio representations, and used to elicit query variations from crowdworkers, with a total of 10,437 queries collected against the 173 topics. Of these, 10,089 include key-stroke level instrumentation that captures the timings of character insertions and deletions made by the workers while typing their queries. These new resources support a wide variety of experiments, including large-scale efficiency exercises and query auto-completion synthesis, with scope for future addition of relevance judgments to support offline effectiveness experiments and hence batch evaluation campaigns.

Proceedings of the 29th International Conference on Information and Knowledge Management (CIKM 2020)